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Chapter 1

A Crash Course on Category Theory

The objective of this course is to develop a comprehensive toolkit to study a very broad class of

mathematical objects, such as abelian groups, modules over commutative rings, vector spaces, and

more. Broadly speaking, these objects are all categories, and the toolkit we will develop will apply

to a specific kind of categories known as abelian categories.

Before we develop the homological algebra toolkit, we will need to develop a basic understanding

of category theory. This will be the primary focus of this chapter. In so doing, we will be able

to understand the theory of abelian categories and understand the broader context in which the

theory of homological algebra is applicable.

1.1 Important Fundamentals

The basic idea of category theory is to reason collectively with large classes of mathematical objects.

It is often useful to talk about a ‘set of all sets’ or a ‘set of all groups’. Unfortunately, if we reason

about these naïvely, we run the risk of running into paradoxes, such as Russell’s paradox. Category

theory provides a way to reason about these large classes of objects without running into these

paradoxes.

In this module, we will not be too precise about what constitutes a class; this is actually a very

important choice in category theory, and the fact that we will not be precise about this makes
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our treatment of the subject fundamentally imprecise. Nevertheless, our treatment will be rigorous

enough for the purposes of studying homological algebra.

With this disclaimer in mind, we are ready to begin.

1.1.1 Objects and Morphisms

Definition 1.1.1 (Category). A category consists of the following data.

1. A class of objects, denoted |C|.

2. For each pair of objects A;B ∈ |C|, a class of morphisms from A to B, denoted

HomC(A;B). This class can be empty.

3. For each object A ∈ |C|, a distinguished morphism idA ∈ HomC(A;A), known as

the identity morphism on A.

4. For each ordered triple of objects A;B; C ∈ |C|, a composition map

◦ : HomC(A;B)× HomC(B;C) → HomC(A; C) : (f ; g) 7→ g ◦ f

such that

(i) ◦ is associative, ie, for all objects A;B; C;D ∈ |C|, f ∈ HomC(A;B), g ∈

HomC(B;C), and h ∈ HomC(C;D), we have (h ◦ g) ◦ f = h ◦ (g ◦ f ).

(ii) For all objects A;B ∈ |C| and morphisms f ∈ HomC(A;B), we have f ◦ idA = f

and idB ◦f = f .

There are numerous examples of categories, some familiar and some unfamiliar.

Example 1.1.2 (Sets). We can define a category Set whose objects are sets, whose mor-

phisms are maps between sets, and in which the composition map is the standard composition

of funtions.

There is a slightly less familiar example that is of a computer scientific flavour.

Example 1.1.3 (Pre-Orders). Let X be any set. Let ≤ be a pre-order on X, ie, a binary

relation that is reflexive, antisymmetric and transitive. We can define a category ⟨X;≤⟩
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such that

1. The objects of ⟨X;≤⟩ are single-element sets containing the elements of X. Ie, if

X = N, then |X| = {{0} ; {1} ; {2} ; : : :}. In particular, |X| is a set—in fact, a set

that is in bijection with X.

2. For any {x} ; {y} ∈ |X|, there can be a unique function f : {x} → {y} (in the

category of sets). In the category ⟨X;≤⟩, we say define

Hom⟨X;≤⟩({x} ; {y}) =

the sole function {x} → {y} if x ≤ y

∅ otherwise

3. We know that ≤ is reflexive, so we have the identity morphism from any {x} to itself.

4. Composition of functions is the standard set-theoretic composition of functions:

(i) This is sensible because composition of functions and pre-orders are both transi-

tive.

(ii) This is associative because the set-theoretic composition of functions is associa-

tive.

(iii) There does exist an identity on every object with respect to this composition

operation because the pre-order is reflexive.

Finally, a more abstract example.

Example 1.1.4 (Monoids). Let M be a monoid with with operation × and identity e. We

can view M as a category C with the following data.

1. There is only one object in this category. This object can be anything. We denote it

?. Ie, we have |C| = {?}.

2. We can allow M to act on ? syntactically. This means that we associate to any x ∈ M

a map ? → ?, which we denote by an arrow from ? to itself. When we say this action

is syntactic, we mean that we do not distinguish actions by their effects, ie, we do not

view these actions of elements of M as maps from ? to ? (because in that case, we

would need there to be enough maps from ? to ? to account for all elements of M).

Instead, we view these actions as labels on the arrows from ? to itself.

3. The identity morphism on ? is the action of the identity element e ∈ M.
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4. Composition of morphisms is given by the monoid operation ×. This is associative

because the monoid operation is associative, and the identity morphism is an identity

with respect to this composition because it is associated with the identity element of

the monoid.

A specific thing that we can take ? to be is the monoid M itself (ie, |C| = {M}). Then, the

morphisms in C correspond to the monoid homomorphisms M → M by (left-)multiplication

by elements of M. In other words, we describe C by the standard action of M on itself.

In the above examples, the category Set stands out as being the ‘largest’: in the other two

examples, the class of objects was actually a set. This is not true in Set. That being said, in all

our examples, the morphisms between any two objects formed a set. We make two definitions here

to capture this idea.

Definition 1.1.5 (Locally Small Categories). A category is locally small if the class of

morphisms between any two objects is a set.

In this module, we will not study any categories that are not locally small. We next define a

category that is even more restrictive.

Definition 1.1.6 (Small Category). A category is small if it is locally small and the class

of objects is a set.

All the examples we have discussed so far are of locally small categories. Set, however, is not a

small category, whereas pre-ordered sets and monoids are small categories.

Finally, we define a construction that flips arrows in a category.

Definition 1.1.7 (The Opposite Category). Given a category C, the opposite category

Cop is defined as follows.

1. The objects of Cop are the same as the objects of C.

2. For each pair of objects A;B ∈ |C|, we define HomCop(A;B) = HomC(B;A).

3. For each object A ∈ |C|, the identity morphism in Cop is the same as the identity
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morphism in C, i.e., idA.

4. For each ordered triple of objects A;B; C ∈ |C|, the composition map in Cop is defined

by reversing the order of composition in C, i.e., for f ∈ HomCop(A;B) and g ∈

HomCop(B;C), we define g ◦ f in Cop to be f ◦ g in C.

One can show that the above data does, indeed, form a category.

1.1.2 Properties of Morphisms

sorry

1.1.3 Functors

It turns out that we can define a meaningful notion of mapping categories to categories.

Definition 1.1.8 (Covariant Functor). Given categories C and D, a covariant functor

F : C → D associates

1. To each object A ∈ |C|, an object F (A) ∈ |D|.

2. To each pair of objects A;B ∈ |C|, a map F : HomC(A;B) → HomD(F (A); F (B))

such that

(i) For all objects A ∈ |C|, F (idA) = idF (A).

(ii) For all objects A;B; C ∈ |C| and morphisms f ∈ HomC(A;B) and g ∈

HomC(B;C), F (g ◦ f ) = F (g) ◦ F (f ).

A functor is essentially something that associates objects to objects and arrows to arrows. Covari-

ance means that arrows are preserved. We also have a notion of functors that flip arrows.

Definition 1.1.9 (Contravariant Functor). Given categories C and D, a contravariant

functor F : C → D is a covariant functor F : Cop → D.

To some degree, we can view functors as ‘structure-preserving maps’ between categories, ie, as

‘morphisms’ between categories.
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Example 1.1.10 (The Category of Small Categories). We denote by Cat the category

whose objects are small categories and whose morphisms are functors between small cate-

gories. The identity morphism on a small category C is the identity functor idC : C → C.

The composition operation on morphisms is the composition operation on functors.

There are many examples of functors with which we are familiar.

Example 1.1.11 (Exponential Functors). Recall from Example 1.1.4 that monoids can

be viewed as categories. Consider the monoids (N; 0;+) and (N; 1;×). We can define a

functor F : (N; 0;+) → (N; 1;×) by F (+) = × and F (n) = 2n. This is a functor because

it preserves the monoid structure.

1.2 Natural Transformations

sorry

1.2.1 Equivalences of Categories

sorry

1.2.2 Adjoint Pairs

Often, categories will be related but not quite equivalent. The idea is to define a weak notion of

equivalence using the concept of adjunction. This is a very important concept in category theory,

relevant not only to mathematicians but also to computer scientists.

The way that adjunctions are expressed are in terms of functors going both ways between two

categories. These functions will express an adjunction if they are an adjoint pair, ie, if there is a

specific relationship between them.

Definition 1.2.1 (Adjoint Pair). Let C and D be categories. sorry
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Example 1.2.2 (The Curry Adjunction).

1.3 Categorical Constructions



Exercises

Here, we provide solutions to the weekly problem sheets.

Problem Sheet 1

Exercise 1.1. Foo

Solution. This is how you write a solution.



For the latest version of these notes, visit https://thefundamentaltheor3m.github.io/HomAlgNotes/

LastLocallyCompiled.pdf. For any suggestions or corrections, please feel free to fork my repos-

itory and make a pull request.

https://thefundamentaltheor3m.github.io/HomAlgNotes/LastLocallyCompiled.pdf
https://thefundamentaltheor3m.github.io/HomAlgNotes/LastLocallyCompiled.pdf
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