
MATH70132: Mathematical Logic

Lecturer: David Evans

Notes written by Sidharth Hariharan

Imperial College London - Spring 2025

Contents

1 Propositional Logic 3

1.1 Propositional Formulae . 4

1.1.1 Propositions and Connectives . 4

1.1.2 Truth Functions . 6

1.1.3 Adequacy . 9

1.2 A Formal System for Propositional Logic . 14

1.2.1 Formal Deduction Systems . 15

1.2.2 Constructing a Formal System Propositional Logic 17

1.2.3 Deductions in L . 20

1.3 Important Properties of L . 24

1.3.1 Propositional Valuations . 24

1.3.2 Soundness . 25

1.3.3 Consistency . 25

1.3.4 Completeness . 26

2 First-Order Logic 29

2.1 Languages, Structures and Interpretations . 30

2.1.1 First-Order Structures . 30

2.1.2 First-Order Languages . 34

2.1.3 First-Order Structures Revisited . 38

2.2 A Bridge between Propositional and First-Order Logic 42

2.2.1 Valuations Satisfying Formulae . 42

2.2.2 Substitution . 46

1

2.3 Variables and the Universal Quantifier . 47

2.3.1 Bound and Free Variables . 47

2.3.2 An Analogue of Completeness . 50

2.3.3 Understanding the Universal Quantifier 51

2.4 A Formal System for First-Order Logic . 54

2.4.1 The Formal Deduction System KL . 54

2.4.2 Tools for Deduction . 56

2.4.3 Soundness . 56

2.4.4 Consistency . 59

2.4.5 Model Existence . 60

2.4.6 Compactness . 62

2.4.7 Completeness . 63

2.5 First-Order Languages with Equality . 64

2.5.1 The Axioms of Equality . 64

2.5.2 Normal Structures . 65

2.5.3 Normal Models . 65

2.6 Linear Orders . 66

3 Set Theory 67

3.1 Naïve Set Theory . 67

3.1.1 Familiar Set-Theoretic Constructions . 67

3.1.2 The Concept of Cardinality . 68

3.1.3 The Zermelo-Fraenkel Axioms . 70

Exercises 72

Problems Class 1 . 72

Problems Class 2 . 74

Problems Class 3 . 76

References 78

Chapter 1

Propositional Logic

Propositional logic is the logic of reasoning and proof. Before we get started with anything formal,

here’s a motivating example.

Consider the following statement:

If Mr Jones is happy, then Mrs Jones is unhappy, and if Mrs Jones is unhappy, then

Mr Jones is unhappy. Therefore, Mr Jones is unhappy.

One can ask ourselves whether it is logically valid to conclude that Mr Jones is unhappy based

on the relationship between the happiness of Mr Jones and that of Mrs Jones expressed in the

sentence preceding it.

Putting this into symbols, let P denote the statement that Mr Jones is happy, and let Q denote

the statement that Mrs Jones is unhappy. We can express the statement as follows:

((P =⇒ Q) ∧ (Q =⇒ ¬P)) =⇒ (¬P) (1.0.1)

This disambiguation, by removing any question of marital harmony from what is otherwise a purely

logical question, allows us to manually check whether (1.0.1) is a valid statement by constructing

a truth table.

We will begin by developing some machinery to reason about these sorts of statements more

formally.

Chapter 1. Propositional Logic Page 4

1.1 Propositional Formulae

Broadly speaking, the study of propositional logic involves studying its two major components:

syntax and semantics. While the most formal approach to the study of propositional logic is to

study them in that order, in this module, we study semantics before syntax, because while syntax

must precede semantics, semantics can serve as motivation for the syntactic choices we make when

defining a ‘formal system’ for propositional logic (see Section 1.2). In this section, we will study

the semantics of propositional logic.

1.1.1 Propositions and Connectives

We begin by defining the notion of a proposition.

Definition 1.1.1 (Proposition). A proposition is a statement that is either true or false.

Convention. We will denote the state of being true by T and that of being false by F.

Propositions can be connected to each other using tools known as connectives. These can be

thought of as truth table rules.

Convention. Before we define the actual connectives we shall use, we list them down, along

with notation.

1. Conjunction (∧)

2. Disjunction (∨)

3. Negation (¬)

4. Implication (→)

5. The Biconditional (↔)

In particular, we will only use the =⇒ and ⇐⇒ symbols when reasoning informally.

For formal use, we will stick to the → and ↔ symbols. In more precise terms, we will use

=⇒ and ⇐⇒ when reasoning about the language we are constructing, whereas we will

use → and ↔ when reasoning within the language. As we shall see, it will be of paramount

importance to distinguish between these two modes of reasoning.

Chapter 1. Propositional Logic Page 5

We define them exhaustively as follows.

Definition 1.1.2 (Connectives). Let p and q be true/false variables. We define each of the

connectives listed above to take on truth values depending on those of p and q as follows.

p q (¬p) (¬q) (p ∧ q) (p ∨ q) (p → q) (p ↔ q)
T T F F T T T T
T F F T F T F F
F T T F F T T F
F F T T F F T T

We are now ready to define the main object of study in this section: propositional formulae.

Definition 1.1.3 (Propositional Formula). A propositional formula is obtained from

propositional variables and connectives via the following rules:

(i) Any propositional variable is a propositional formula.

(ii) If ffi and are formulae, then so are (¬ffi), (¬), (ffi ∧), (ffi ∨), (ffi→),

(→ ffi), and (ffi↔).

(iii) Any formula arises in this manner after a finite number of steps.

What this means is that a propositional formula is a string of symbols consisting of

1. variables that take on true/false values,

2. connectors that express the relationship between these variables, and

3. parentheses/brackets that separate formulae within formulae and specify the order in which

they must be evaluated when the constituent variables are assigned specific values.

In particular, every propositional formula is either a propositional variable or is built from ‘shorter’

formulae, where by ‘shorter’ we mean consisting of fewer symbols.

Convention. Throughout this module, we will adopt two important conventions when deal-

ing with propositional formulae.

1. All propositional formulae, barring those consisting of a single variable, shall be en-

closed in parentheses.

2. When we want to denote a propositional formula by a certain symbol, we will use the

Chapter 1. Propositional Logic Page 6

notation “symobol : formula”.

As a concluding remark on the nature of propositional formulae, we will note that just as we use

trees to evaluate expressions on the computer when performing arithmetic, we can use them to

express and evaluate propositional formulae as well. We will not usually do this, however, as it

takes up a lot of space. In any event, we would first need to make precise the notion of evaluating

a propositional formula. For this, we will turn to the concept of a truth function.

1.1.2 Truth Functions

Any assignment of truth values to the propositional variables in a formula ffi determines the truth

value for ffi in a unique manner, using the exhaustive definitions of the connectives given in

Definition 1.1.2. We often express all possible values of a propositional formula in a truth table,

much like we did in Definition 1.1.2 when defining the connectives.

Example 1.1.4. Consider the formula ffi : ((p → (¬q)) → p), where p and q are proposi-

tional variables. We construct a truth table as follows.

p q (¬q) (p → (¬q)) ((p → (¬q)) → p)
T T F F T
T F T T T
F T F T F
F F F T F

From this table, it is clear that the truth value of ffi depends on the truth values of p and q

in some manner (to be perfectly precise, it only depends on the truth value of p, and is, in

fact, biconditionally equivalent to p). We would like to have a formal notion of navigating this

dependence to ‘compute a value for ffi given values of p and q’.

Throughout this subsection, n will denote an arbitrary natural number.

Definition 1.1.5 (Truth Function). A truth function of n variables is a function

f : {T;F}n → {T;F}

Chapter 1. Propositional Logic Page 7

Before discussing the relevance of truth functions, we will mention a very natural fact.

Lemma 1.1.6. To show two truth functions are equal, it suffices that they take the value

T on precisely the same inputs or that they take the value F on precisely the same inputs.

Proof. This is obvious, because any truth function can only take one of two values. If they take

one value on precisely the same inputs, they must take the other value on the other inputs. This

precisely corresponds to what it means for functions to be equal by extensionality.

These are very directly related to propositional formulae.

Definition 1.1.7 (Truth Function of a Propositional Formula). Let ffi be a propositional

formula whose variables are p1; : : : ; pn. We can associate to ffi a truth function whose truth

value at any (x1; : : : ; xn) ∈ {T;F}n corresponds to the truth value of ffi that arises from

setting pi to xi for all 1 ≤ i ≤ n. We define this truth function to be the truth function

of ffi, denoted Fffi.

We can now construct a truth function for the example we saw at the very beginning involving Mr

and Mrs Jones (cf. (1.0.1)).

Example 1.1.8. sorry

We see something quite remarkable here: the truth function of the propositional formula defined

in (1.0.1) maps every possible input to T! We have a special term for this.

Definition 1.1.9 (Tautology). A propositional formula ffi is a tautology if its truth function

Fffi maps every possible input to T.

We can also be more precise about what the biconditional connective actually tells us.

Definition 1.1.10 (Logical Equivalence). The propositional formulae and ffl are logically

equivalent if the truth function F ↔ffl of their biconditional is a tautology.

Chapter 1. Propositional Logic Page 8

We have a fairly basic result about logical equivalence.

Lemma 1.1.11. Let p1; : : : ; pn be propositional variables and let and ffl be formulae in

p1; : : : ; pn. Then, and ffl are logically equivalent if and only if F = Fffl.

We omit the proof of this result as it merely involves checking things manually. A computer should

be able to do this almost instantaneously.

We can also say something about composing formulae together.

Lemma 1.1.12. Suppose that ffi is a propositional formula with variables p1; : : : ; pn. Let

ffi1; : : : ; ffin be propositional formulae. Denote by # the result of substituting each pi with

ffii in ffi. Then,

(i) # is a propositional formula.

(ii) if ffi is a tautology, so is #.

(iii) the truth function of # is the result of composing the truth function of ffi with the

Cartesian product of the truth functions of ffi1; : : : ; ffin.

We do not prove this result either, as it merely involves manual verification.

Example 1.1.13. For propositional variables p1; p2, the statement

(((¬p2) → (¬p1)) → (p1 → p2)) is a tautology. Therefore, if ffi1 and ffi2 are proposi-

tional formulae, then (((¬ffi2) → (¬ffi1)) → (ffi1 → ffi2)) is a tautology as well.

We will also mention that a composition being a tautology does not mean the outermost proposition

of the composition is a tautology.

Non-Example 1.1.14. Let p be a propositional variable. The formula ffi : (p → (¬p)) is

not a tautology. However, we can find a propositional formula ffi′ such that (ffi1 → (¬ffi1))

is a tautology: for example, we can define ffi′ to be identically F.

There are numerous propositional formulae that we know to be logically equivalent. Here is a

(non-exhaustive) list.

Chapter 1. Propositional Logic Page 9

Example 1.1.15 (Logically Equivalent Formulae). Let p1; p2; p3 be logically equivalent

formulae. Then, the following equivalences hold.

1. (p1 ∧ (p2 ∧ p3)) is logically equivalent to ((p1 ∧ p2) ∧ p3).

2. (p1 ∨ (p2 ∨ p3)) is logically equivalent to ((p1 ∨ p2) ∨ p3).

3. (p1 ∨ (p2 ∧ p3)) is logically equivalent to ((p1 ∨ p2) ∧ (p1 ∧ p3)).

4. (¬ (¬p1)) is logically equivalent to p1.

5. (¬ (p1 ∧ p2)) is logically equivalent to ((¬p1) ∨ (¬p2)).

6. (¬ (p1 ∨ p2)) is logically equivalent to ((¬p1) ∧ (¬p2)).

Upon inspection, one can find algebraic patterns in the above logical equivalences. There are

similarities to the axioms of a boolean algebra. We will not explore this further in this module,

but we will adopt the convention used in algebra where parentheses are dropped when dealing with

associative operations.

Convention. We will denote both (p1 ∧ (p2 ∧ p3)) and ((p1 ∧ p2) ∧ p3) by (p1 ∧ p2 ∧ p3).

Similarly, we will denote both (p1 ∨ (p2 ∨ p3)) and ((p1 ∨ p2) ∨ p3) by (p1 ∨ p2 ∨ p3).

We will end with a combinatorial fact about truth functions.

Lemma 1.1.16. There are 22
n possible truth functions on n variables.

Proof. A truth function is any function from a the set {T;F}n to the set {T;F}, with no further

restrictions. The former set has 2n elements and the latter set has 2 elements. Therefore, there

are 22
n possible truth functions.

1.1.3 Adequacy

We have defined several connectives so far, but we have yet to say anything about whether we will

be defining any more connectives going forward. To begin, we will state an important definition.

Chapter 1. Propositional Logic Page 10

Definition 1.1.17 (Adequacy). We say that a set S of connectives is adequate if for

every n ≥ 1, every truth function on n variables can be expressed as the truth function as a

propositional formula which only involves connectives from S (and n propositional variables).

The idea that this definition seeks to express is that a set is adequate if and only if for evern n,

every propositional formula in n variables is logically equivalent to a propositional formula that

only contains those n variables and connectives from the set in question. In other words, every

propositional formula should admit an equivalent expression that does not contain any connectives

apart from those in the set in question. The reason this is expressed in terms of truth functions is

that that is how logical equivalence is defined (cf. Definition 1.1.10).

We now have the first theorem of this module.

Theorem 1.1.18. The set {¬;∧;∨} is adequate.

Proof. Fix some n ≥ 1, and let G : {T;F}n → {T;F} be a truth function. We have two cases.

Case 1. The first case is a trivial case. There are two trivial truth functions on n variables,

namely, the constrant truth functions that take the values T and F for all inputs. Truth

is not something encoded ‘naturally’ into the connectives {¬;∧;∨}, but falsity is: the ¬

connective directly has to do with expressing falsity. Therefore, the trivial truth function

that we will show can always be expressed in terms of the desired connectives is the one that

is always false. We show this rigorously.

Assume that G is identically F. Then, define the propositional formula ffi : (p1 ∧ (¬p1)).

Even defining it as a formula on n variables, it is clear to see that its truth function Fffi is

identically F. Therefore, G = Fffi.1

Case 2. The second case will be the nontrivial case of when a truth function can take on both

values T and F. The way we will show that {¬;∧;∨} is adequate is by constructing a

1Admittedly, we are using the Axiom of Extensionality here to define what it means for the two functions to be
equal. We will ignore this technicality for now.

Chapter 1. Propositional Logic Page 11

propositional formula in n variables whose truth function is T whenever the one in question

is T. We will do this by isolating the inputs that yield T and manipulating propositional

variables in a way that corresponds to these inputs.

Assume that G is not identically T. Then, list all v ∈ {T;F}n such that G(v) = T. Since

{T;F}n is a finite set, this list is finite, and we can number these v1; : : : ; vr . For each

1 ≤ i ≤ r , denote

vi = (vi1; : : : ; vi r)

where vi j ∈ {T;F} is the jth component of vi . Let p1; : : : ; pn be propositional variables.

Define propositional formulae (qi j)1≤i≤r;1≤j≤n by

qi j :

pj if vi j = T

(¬pj) if vi j = F

Then, qi j has value T if and only if pj has value vi j . The idea is to now construct a

propositional formula that has value T if and only if (p1; : : : ; pn) is one of the vi .

First, we formalise the notion of the (p1; : : : ; pn) taking the value of one of the vi . The idea

is to combine them using the ∧ connective. Define propositional formulae (i)1≤i≤r by

 i : (qi1 ∧ · · · ∧ qin)

Then, we have that for all 1 ≤ i ≤ r and v ∈ {T;F}n,

F i
(v) = T ⇐⇒ qi1; : : : ; qin all have value T ⇐⇒ Each pj has value vi j ⇐⇒ v = vi

Next, we combine these i so that the truth function of the resulting formula is T if and only

if one of the i is true, a fact that would be equivalent to the input of the truth function

being precisely one of the vi . We do this using the ∨ connective. Define the propositional

formula

: (1 ∨ · · · ∨ r)

Chapter 1. Propositional Logic Page 12

Then, for all v ∈ {T;F}n, we have that

F#(v) = T ⇐⇒ One of the i is true ⇐⇒ v is precisely equal to one of the vi

In partiular, we have that F#(v) = T if and only if G(v) = T for all v ∈ {T;F}n. Then, by

Lemma 1.1.6, we are done.

Before illustrating the point of the above theorem, we make an important definition.

Definition 1.1.19 (Disjunctive Normal Form). When a propositional formula is expressed

only in terms of propositional variables and the set {¬;∧;∨} of connectives, it is said to be

in disjunctive normal form, which we abbreviate to DNF.

What Theorem 1.1.18 then tells us is that every propositional formula is expressible in DNF.

Corollary 1.1.20. For every propositional formula in n variables, there exists a logically

equivalent propositional formula in n variables that is in DNF.

Proof. We know that every propositional formula admits a truth function. For any propositional

formula in n variables, we can apply Theorem 1.1.18 to its truth function. Then, unfolding the

definition of adequacy yields the desired result.

Example 1.1.21. Let p1 and p2 be propositional variables. Consider the propositional

formula ffl : ((p1 → p2) → (¬p2)). We can see that Fffl(v) = T only if v = (T;F) or

v = (F;F). Therefore, the DNF of ffl is

((p1 ∧ (¬p2)) ∨ ((¬p1) ∧ (¬p2)))

It turns out that {¬;∧;∨} is not the only adequate set of connectives.

Example 1.1.22 (Adequate Sets). The following sets of connectives are adequate.

(i) {¬;∨}

(ii) {¬;∧}

Chapter 1. Propositional Logic Page 13

(iii) {¬;→}

The way we can prove this is by simplifying each case using Theorem 1.1.18. Fix propositional

variables p1; p2.

(i) It suffices to show that p1 ∧ p2 can be expressed using ¬ and ∨. Indeed,

(p1 ∧ p2) is logically equivalent to (¬ ((¬p1) ∨ (¬p2)))

(ii) It suffices to show that p1 ∨ p2 can be expressed using ¬ and ∧. Indeed,

(p1 ∨ p2) is logically equivalent to (¬ ((¬p1) ∧ (¬p2)))

(iii) By Case (i), it suffices to show that p1 ∨ p2 can be expressed in terms of ¬ and →.

Indeed,

(p1 ∨ p2) is logically equivalent to ((¬p1) → p2)

There are also sets of connectives that are not adequate.

Non-Example 1.1.23 (Inadequate Sets). The following sets are not adequate.

(i) {∧;∨}

(ii) {¬;↔}

The way we can prove this is by constructing truth functions that cannot be realised by

combining propositional variables using only the connectives in the above sets.

(i) No truth function that is identically false can be realised. For that matter, no truth

function that maps an input whose every component is T to F can be realised. For-

mally, consider any propositional formula ffi built exclusively using a finite set of propo-

sitional variables and the connectives ∧ and ∨. One can show, by induction on the

number of connectives in ffi, that Fffi(T; : : : ;T) = T. Since this is true of any ffi, a

truth function mapping an input of the form (T; : : : ;T) to F is not the truth function

of a propositional formula that only includes ∧ and ∨.

(ii) No truth function that is identcally true can be realised.

It turns out that there is one connective with a rather astounding adequacy property.

Chapter 1. Propositional Logic Page 14

Definition 1.1.24 (The NOR Connective). Define the NOR connective, denoted ↓, via

the following truth table in propositional variables p and q.

p q (p ↓ q)
T T F
T F F
F T F
F F T

Informally, NOR corresponds to “neither ... nor ...”. Formally, we have the following.

Lemma 1.1.25. For all propositional variables p and q, the DNF of (p ↓ q) is given by

((¬p) ∧ (¬q)). In particular, we have that (p ↓ q) is logically equivalent to ((¬p) ∧ (¬q)).

We do not write out a proof, as it merely involves comparing truth tables.

Example 1.1.26 (An Adequate Set with One Connective). It turns out that {↓} is con-

nective. Indeed, for propositional variables p and q, we have

1. (p ↓ p) is logically equivalent to (¬p).

2. ((p ↓ p) ↓ (q ↓ q)) is logically equivalent to (p ∧ q).

So far, we have been studying meaning, in the form of truth functions, but have yet to formally

define what we are allowed to express that has meaning within the propositional paradigm. In

other words, we have been studying semantics but have yet to define the syntax of propositional

logic. We will do this in the next section.

1.2 A Formal System for Propositional Logic

The motivating idea for everything we shall do in this section is to try and generate all tautologies

from certain ‘basic assumptions’, known as axioms, using certain deduction rules. Together,

these will form a formal system for propositional logic.

Chapter 1. Propositional Logic Page 15

1.2.1 Formal Deduction Systems

This subsection gives a very general definition of a formal deduction system, which allows us to

construct ‘proofs’ in a sense more general than propositional logic. We will then specialise this to

propositional logic. The material here was not covered in lectures, and is based on [1, Definition

1.2.1].

The first ingredient of a formal system is the set of symbols we are allowed to use within it.

Definition 1.2.1 (Alphabet). An alphabet is a nonempty list of symbols.

For the remainder of this subsection, fix an alphabet A. A is not useful on its own: we need to be

able to combine elements of A with each other.

Definition 1.2.2 (Strings). A string is any finite sequence of of elements of A.

We do not always want all strings to be useful to us, as we shall see in the case of propositional

logic. Our next ingredient in the construction of a formal system is the precise set of strings we

are allowed to use.

Definition 1.2.3 (Formulae). A set of formulae is a non-empty subset of a set of strings

in A.

For the remainder of this subsection, fix a set F of formulae. It will be important that to distinguish

the formulae that will serve as our most basic assumptions and those that will be derived from

them.

Definition 1.2.4 (Axioms). A set of axioms is a subset of F .

For the remainder of this subsection, fix a set A of axioms. We now need to be able to generate

formulae from the distinguished ones (ie, axioms).

Definition 1.2.5 (Deduction Rules). A deduction rule is a function that takes in a finite

list of formulae in F and outputs a formula in F .

Chapter 1. Propositional Logic Page 16

Together, these ingredients form a formal deduction system.

Definition 1.2.6 (Formal Deduction System). A formal deduction system Σ is a tuple

(A;F ;A;D), where

1. A is an alphabet

2. F is a set of formulae in A

3. A is a set of axioms contained in F

4. D is a set of deduction rules on F

For the remainder of this subsection, fix a formal deduction system Σ = (A;F ;A;D). We can

now define what it means to reason in this system.

Definition 1.2.7 (Proof). A proof in Σ is a finite sequence of formulae ffi1; : : : ; ffin ∈ F

such that each ffii is either an axiom in A or is obtained from ffi1; : : : ; ffii−1 using a deduction

rule in D.

We want to be able to isolate the formulae that are ‘proven’ in this manner.

Definition 1.2.8 (Theorem). The last formula ffii that is contained in a proof ffi1; : : : ; ffin

is called a theorem of Σ. We write ⊢Σ ffi to denote that ffi is a theorem of Σ.

There is a direct correspondence between the way we intuitively think about the proofs and the

way we view them here.

Convention. We say that proof P in Σ is a proof of a theorem ffi if ffi is the last formula

in the sequence of formulae that make up P .

Note the following trivial result.

Lemma 1.2.9. Any axiom is a theorem.

Proof. An axiom ffi is a finite string of formulae consisting of a single formula, namely, itself.

Therefore, the proof consisting only of ffi is a proof of ffi.

Chapter 1. Propositional Logic Page 17

Finally, we mention a condition on formal deduction systems that lends them to computer-based

verification.

Definition 1.2.10 (Recursive Formal Deduction Systems). Suppose there exists an algo-

rithm that can test whether a string is a formula and whether it is an axiom. Then, Σ is

called a recursive formal deduction system.

The point of the above definition is that in recursive systems, a computer can systematically

generate all possible proofs in Σ by checking whether every possible formula is an axiom or is

derived from axioms using deduction rules. In this case, the validity of any proof can be checked,

because each formula in its constituent sequence can be checked.

We now close our discussion on general formal deduction systems. We will now specialise to

propositional logic.

1.2.2 Constructing a Formal System Propositional Logic

The objective of this subsection is to define the formal system for propositional logic that we will

use in this module. We want this formal system to correspond to our intuition in a very specific

manner: we would like the theorems in this system to be precisely the tautologies. In other words,

we want to construct a system in which theorems are precisely ‘statements that are true’.

If we re-examine Definition 1.2.8, we observe something rather interesting: the definition does not

mention truth! The validity of a theorem only has to do with the deduction rules of the formal

system in which it lives. Therefore, we want to define axioms and deduction rules for propositional

logic such that the axioms are ‘true’ (ie, are tautologies, as defined in Definition 1.1.9) and the

deduction rules preserve truth. This is an important motivation not only for the choice of deduction

rule but also the chocie of (adequate) set of connectives we use in our formal system.

We begin by defining the alphabet.

Definition 1.2.11 (Alphabet for Propositional Logic). The alphabet for propositional logic

consists of the following symbols:

Chapter 1. Propositional Logic Page 18

1. Variables p1; p2; p3; : : :

2. Connectives ¬;→

3. Punctuation (;)

Next, we define the formulae of propositional logic.

Definition 1.2.12 (Formulae of Propositional Logic). We define the formulae of proposi-

tional logic in the following manner.

1. Any variable pi is a formula.

2. If ffi is a formula, then (¬ffi) is a formula.

3. If ffi and are formulae, then (ffi→) is a formula.

4. Any formula arises from a finite number of applications of the above rules.

Next, we define the axioms of propositional logic. These do appear to be a bit unusual when

expressed purely in symbols, but we can interpret them in plain English as well.

Definition 1.2.13 (Axioms of Propositional Logic). Let ffi; ; ffl be formulae in propositional

logic. The axioms of propositional logic in ffi, and (where present) ffl are the following.

(A1) (ffi→ (→ ffi))

(A2) ((ffi→ (→ ffl)) → ((ffi→) → (ffi→ ffl)))

(A3) (((¬ffi) → (¬)) → (→ ffi))

We can interpret these axioms as follows.

(A1) If ffi is true, then ffi is implied by any statement.

(A2) If (→ ffl) is true (under some assumption ffi), then to prove ffl (assuming ffi), it suffices to

prove (assuming ffi).

(A3) An implication (ffi→) is implied by its contrapositive ((¬ffi) → (¬)).

Indeed, we can see that these axioms are all tautologies: they are always true. This is exactly what

we want from axioms.

Remark. It must be stressed that (A1) and (A2) are axioms in ffi; ; ffl and (A3) is an axiom in ffi; .

Chapter 1. Propositional Logic Page 19

There are therefore infinitely many axioms, one for each choice of ffi, , and, where applicable,

ffl. In fact, (A1)-(A3) are sometimes referred to as axiom schemes instead of just axioms to

underscore this.

Finally, we define the sole deduction rule of propositional logic.

Definition 1.2.14 (Deduction Rule of Propositional Logic). Fix formulae ffi and . The

deduction rule on ffi and states:

(MP) From ffi and (ffi→), we can deduce .

This rule is known as modus ponens. We will abbreviate this to (MP).

We can now define the formal deduction system for propositional logic.

Definition 1.2.15 (Formal Deduction System for Propositional Logic). The formal de-

duction system for propositional logic is the tuple L = (A;F ;A;D), where

1. A is the alphabet for propositional logic consisting of countably many propositional

variables, as defined in Definition 1.2.11.

2. F is the set of formulae of propositional logic constructed in terms of the connectives

¬ and →, as defined in Definition 1.2.12.

3. A is the set of axioms (A1)-(A3) of propositional logic defined in Definition 1.2.13.

4. D is the deduction rule (MP) defined in Definition 1.2.14.

We are now ready to write formal proofs in L.

Example 1.2.16. Suppose ffi is any L-formula. Then, (ffi→ ffi) is a theorem of L, ie,

⊢L (ffi→ ffi) (1.2.1)

It is not obvious how to prove this statement using only (A1)-(A3) and (MP). But it is

possible. We present a formal proof that consists of a sequence of five formulas, each either

axiomatic or deduced from two previous ones using modus ponens.

Formal proof in L.

1. (ffi→ ((ffi→ ffi) → ffi))

Chapter 1. Propositional Logic Page 20

Justification: We apply (A1) to ffi; (ffi→ ffi) ; ffi.

2. ((ffi→ ((ffi→ ffi) → ffi)) → ((ffi→ (ffi→ ffi)) → (ffi→ ffi)))

Justification: We apply (A2) to ffi; (ffi→ ffi) ; ffi.

3. ((ffi→ (ffi→ ffi)) → (ffi→ ffi))

Justification: We apply (MP) to steps 2 and 1.

4. (ffi→ (ffi→ ffi))

Justification: We apply (A1) to ffi; ffi; ffi.

5. (ffi→ ffi)

Justification: We apply (MP) to steps 3 and 4.

We need a little more machinery before we can prove that theorems in L are precisely the tautologies.

We will develop this in the next subsection.

1.2.3 Deductions in L

In this subsection, we will develop some machinery as well as notation to deal with the concept

of deduction. However, before we proceed any further, we will give a precise definition of what a

deduction is.

Throughout this subsection, fix a set of L-formulas Γ.

Definition 1.2.17 (Deduction). A deduction from Γ is a finite sequence of L-formulae

ffi1; : : : ; ffin such that for all 1 ≤ i ≤ n, either

• ffii is an axiom of L,

• ffii is a formula in Γ, or

• ffii is obtained from ffi1; : : : ; ffii−1 using modus ponens.

Essentially, deductions capture the notion of proofs, with an additional layer of flexibility coming

from the fact that we are allowed to have assumptions in Γ that go beyond merely the axioms of

L. Just as proofs end in theorems, deductions end in consequences.

Chapter 1. Propositional Logic Page 21

Definition 1.2.18 (Consequence). We say a formula ffi is a consequence of Γ if there

exists a deduction from Γ ending in ffi. In this case, we write Γ ⊢L ffi. If ffi is not a consequence

of Γ, we write Γ ̸⊢L ffi.

The relationship between proofs and deductions/theorems and consequences is that the former

correspond to the case where Γ is empty.

Convention. Instead of writing ∅ ⊢L ffi, we write ⊢L ffi.

Therefore, the theorems in L are precisely those formulae that are not consequences of other

formulae.

We state a rather trivial fact.

Lemma 1.2.19. Let ∆ ⊆ Γ. Then, for all L-formulae ffi, if ∆ ⊢L ffi, then Γ ⊢L ffi.

We do not prove this fact. In fact, we will often use it without mentioning it explicitly.

There is an important theorem that relates the notion of consequence with that of implication and

provides us with a framework of reasoning with statements about consequence.

Theorem 1.2.20 (The Deduction Theorem). Let ffi; be L-formulae. Then,

Γ ∪ { } ⊢L ffi if and only if Γ ⊢L (→ ffi)

Proof. We begin by showing that Γ ∪ { } ⊢L ffi implies Γ ⊢L (→ ffi).

Assume that Γ∪ { } ⊢L ffi. This states that there is a deduction from Γ∪ { } to ffi in the formal

system L. By Definition 1.2.17, we know that such a deduction must be finite. We prove that

for all n ∈ N, if Γ ∪ { } ⊢L ffi is a deduction of length n, then Γ ⊢L (→ ffi). We proceed by

induction on n.

Base Case: n = 1. We know that ffi is either an axiom or is lies in Γ or is . In the first two cases,

Chapter 1. Propositional Logic Page 22

we have

Γ ⊢L ffi

in which case the axiom (A1) guarantees that

Γ ⊢L (ffi→ (→ ffi))

Applying (MP) to the deductions above then gives us that

Γ ⊢L (→ ffi)

as required. In the third case, where ffi is , we have

Γ ⊢L (→)

by the same argument as in Example 1.2.16.

Inductive Case. sorry

From this theorem, we can deduce that the implication connective → is transitive.

Corollary 1.2.21 (Hypothetical Syllogism). Suppose ffi; ; ffl are L-formulae such that Γ ⊢L

(ffi→) and Γ ⊢L (→ ffl). Then, Γ ⊢L (ffi→ ffl).

Proof. We show that there is a deduction of ffl from Γ ∪ {ffi}. We give a formal proof in L.

1. Γ ⊢L ffi→

Justification: Assumption.

2. Γ ⊢L → ffl

Justification: Assumption.

3. Γ ∪ {ffi} ⊢L

Justification: Applying the Deduction Theorem to Step 1.

Chapter 1. Propositional Logic Page 23

4. Γ ∪ {ffi} ⊢L → ffl

Justification: Applying Lemma 1.2.19 to Step 2.

5. Γ ∪ {ffi} ⊢L ffl

Justification: Applying (MP) to Step 4 and Step 3.

6. Γ ⊢L ffi→ ffl

Justification: Applying the Deduction Theorem to Step 5.

The last step is the desired deduction.

Example 1.2.22 (A Few Theorems in L). Suppose ffi and are L-formulae. Then,

(a) ⊢L ((¬) → (→ ffi))

(b) {(¬) ; } ⊢L ffi

(c) ⊢L (((¬ffi) → ffi) → ffi)

are all theorems in L.

Proof.

(a) Problem Sheet 1, Question 6. sorry

(b) We apply (MP) to (a) twice, the first time using our assumption (¬) and the second

time using our assumption .

(c) Suppose ffl is any formula. Then, from (b), we can see that

{(¬ffi) ; ((¬ffi) → ffi)} ⊢L ffl (1.2.2)

because we would be able to apply (MP) to the assumptions to deduce both ffi and

(¬ffi).

Now, let ¸ be an axiom and let ffl be (¬¸). Then, (1.2.2) tells us that

{(¬ffi) ; ((¬ffi) → ffi)} ⊢L (¬¸)

sorry

Chapter 1. Propositional Logic Page 24

1.3 Important Properties of L

In this section, we prove important properties about L, with our first major goal being to prove

that the theorems in L are precisely the tautologies.

1.3.1 Propositional Valuations

Definition 1.3.1 (Propositional Valuation). A propositional valuation v is an assignment

of truth values to propositions p1; p2; : : :, so that

v(pi) ∈ {T;F}

for all i ∈ N.

Using the truth table rules by which we defined the connectives → and ¬ of L (cf. Definition 1.1.2),

we can assign a truth value v(ffi) to any L-formula ffi.

Lemma 1.3.2 (Behaviour of Propositional Valuations). Let ffi; be L-formulae. Then,

1. v((¬ffi)) ̸= v(ffi)

2. v(ffi→) = F if and only if v(ffi) = T and v() = F

We do not prove these results.

We can now be precise about what a tautology is.

Definition 1.3.3 (Tautology). An L-formula ffi is a tautology if v(ffi) = T for all proposi-

tional valuations v.

We are now ready to prove that L is sound.

Chapter 1. Propositional Logic Page 25

1.3.2 Soundness

Definition 1.3.4 (Soundness). We say a formal system is sound if every theorem in it is

a tautology.

Now, the much-awaited result.

Theorem 1.3.5 (Soundness of L). The formal system L of propositional logic is sound.

Proof. Let ffi be a theorem in L. We prove that ffi is a tautology by performing induction on the

length of ffi. The base case involves proving that the axioms (A1)-(A3) are tautologies, and the

inductive case involves proving that the modus ponens deduction rule (MP) preserves tautologies.

While these proofs can be done manually, there is a rather clever trick that can be used in the case

of (A2). This is given in [1, Proof of 1.3.1]. sorry

We have a more general version of this result.

Theorem 1.3.6 (A Generalisation of Soundness). Let Γ be a set of L-formulae, and let ffi

be an L-formula such that Γ ⊢L ffi. If v() = T for all ∈ Γ, then v(ffi) = T.

Proof. The proof is actually identical to that of Theorem 1.3.5, but with Γ being a part of the

base case. In this case, the proof follows from the assumption that v is true on Γ.

Now that we have shown that L is sound, we show that L has other important properties that will

enable us to reason in L the way we would like to.

1.3.3 Consistency

For the remainder of this section, fix a set Γ of L-formulae.

Definition 1.3.7 (Consistency). Γ is consistent if there is no L-formula ffi such that Γ ⊢L ffi

and Γ ⊢L (¬ffi).

Chapter 1. Propositional Logic Page 26

Soundness tells us something about the consistency of the empty set in L, which we will refer to

more generally as the consistency of L.

Theorem 1.3.8 (Consistency of L). There is no L-formula ffi such that ⊢L ffi and ⊢L (¬ffi).

Proof. This follows from Theorem 1.3.5: if such an L-formula ffi did exist, both ffi and (¬ffi) would

need to be tautologies, violating Lemma 1.3.2. Therefore, such an L-formula cannot exist.

We have a more general result.

Proposition 1.3.9. Suppose Γ is a consistent set of L-formulae. Let ffi be an L-formula

that is not a consequence of Γ. Then, Γ ∪ {(¬ffi)} is consistent.

Proof. Suppose that Γ ∪ {(negffi)} is not consistent. Then, there exists a formula such that

Γ ∪ {(¬ffi)} ⊢L (1.3.1)

Γ ∪ {(¬ffi)} ⊢L (¬) (1.3.2)

We can apply the Deduction Theorem (Theorem 1.2.20) to (1.3.2) to deduce that

Γ ⊢L ((¬ffi) → (¬)) (1.3.3)

Then, applying (A3) to (1.3.3), we have

Γ ⊢L (→ ffi) (1.3.4)

In similar fashion, we can apply the Deduction Theorem followed by (A3) to (1.3.1) to deduce that

Γ ⊢L ((¬) → ffi) (1.3.5)

sorry

1.3.4 Completeness

We begin by making an observation about L: in general, it is not true that for any given L-formula,

either it or its negation is a theorem.

Chapter 1. Propositional Logic Page 27

Definition 1.3.10 (Completeness). Let Γ be a consistent set of L-formulae. We say Γ is

complete if for all L-formulae ffi, either Γ ⊢L ffi or Γ ⊢L (¬ffi).

It turns out that all consistent sets of L-formulae are contained in complete sets of formulae.

Theorem 1.3.11 (Lindenbaum’s Lemma). Suppose Γ is a consistent set of L-formulae.

Then, there exists a complete set of L-formulae Γ∗ such that Γ ⊆ Γ∗.

Proof. The idea is to construct Γ∗ by brute force. We know that the alphabet of L is countable.

Therefore, so is the set of all possible L-formulae. We can list them as ffi0; ffi1; : : :. We perform

the fomllowing inductive construction: let Γ0 := Γ and for all n ≥ 0, define

Γn+1 :=

Γn if Γn ⊢L ffin

Γn ∪ {(¬ffin)} if Γn ̸⊢L ffin

(1.3.6)

One can perform induction on n to show that for all n ≥ 0,

• Γn ⊆ Γn+1 (using purely (1.3.6))

• Γn is consistent (using Proposition 1.3.9)

Define

Γ∗ :=
∞[
n=0

Γn

Before we can show that Γ∗ is complete, we need to show that it is consistent: see Definition 1.3.10.

To that end, suppose there exists some L-formula ffi such that Γ∗ ⊢L ffi and Γ∗ ⊢L (¬ffi). This

means there is a finite sequence of deductions from Γ∗ and the axioms of L using only (MP) that

ends in ffi and another one that ends in (¬ffi). There exist i ; j ∈ N such that these sequences are

contained in Γi and Γj respectively, because the Γns represent all possible deductions that can be

made from Γ (and the axioms). Since we have a chain of inclusions, we have either Γi ⊆ Γj or

Γj ⊆ Γi . In either case, we have a contradiction, because Γi and Γj are both consistent, but we

would be able to deduce both ffi and (¬ffi) from one of them. Therefore, Γ∗ is consistent too.

Finally, we show that Γ∗ is complete. Let ffi be a formula. By the enumeration above, we know that

Chapter 1. Propositional Logic Page 28

ffi = ffin for some n ∈ N. We know either Γn ⊢L ffin or Γn ̸⊢L ffin. If the former is true, we have that

Γ∗ ⊢L ffin and we are done. Else, by our construction in (1.3.6), we have that Γn+1 ⊢L (¬ffi), and

therefore, Γ∗ ⊢L (¬ffi). Therefore, from Γ∗, we can deduce either ffi or (¬ffi), making Γ∗ complete,

as required.

Going forward, we will adopt the following notation.

Convention. Let Γ be a consistent set of L-formulae. We will denote by Γ∗ the complete

set of L-formulae containing Γ as given in Theorem 1.3.11.

It turns out that the construction allows us to prove the existence of an important kind of valuation.

Proposition 1.3.12. Let Γ be a consistent set of L-formulae. Then, there exists a propo-

sitional valuation v such that

v(ffi) = T if and only if Γ∗ ⊢L ffi

Proof. sorry

Chapter 2

First-Order Logic

The plan for this part of the module is to examine Predicate Logic, or First-Order Logic. We

will examine the following, though the distinction between semantics and syntax shall not be as

pronounced as it is below:

1. Semantics:

(a) First-order structures

(b) First-order languages and the corresponding formulae

2. Syntax:

(a) A formal system for first-order logic

(b) Gödel’s Completeness Theorem, which tells us that the theorems of the formal system

are the “logically valid formulae”

Before we can begin the study of first-order logic, we need to make several important definitions

and introduce the notation we will use for the remainder of this chapter. We will begin by studying

structures and first-order languages. We will then relate ideas from propositional logic to ideas

in first-order logic. Finally, we will build a formal system for first-order logic and give a rigorous

syntactic foundation for the ideas we discuss.

Chapter 2. First-Order Logic Page 30

2.1 Languages, Structures and Interpretations

In this section, we discuss the notion of first-order languages and their interpretations in first-order

structures. While this is primarily a study of semantics, the definition of languages is syntactic in

nature. Yet, we consider this section to be a study of semantics because the purpose is to give

some sort of meaning to the syntactic expressions we have in first-order languages.

We begin by studying first-order structures in an abstract sense. We then take a syntactic detour

into the study of first-order languages, before examining what it means for structures to exist inside

(and give interpretations for) first-order languages.

2.1.1 First-Order Structures

We begin by discussing relations and functions of a given arity.

Definition 2.1.1 (n-ary Relation on a Set). Suppose A is a set and n ≥ 1 is a natural

number. An n-ary relation on A is a subset

R ⊆ {(a1; : : : ; an) | a1; : : : ; an ∈ A}

We have a similar notion for functions, with the key fact being that n-ary functions take in n inputs

and return a single output, and all inputs and outputs must come from the set in question.

Definition 2.1.2 (n-ary Function on a Set). Given a set A, an n-ary function on A is a

function

f : An → A

We make a subtle distinction between functions and relations in formal and informal language.

This is something that will get clearer as we progress.

Convention. The reason why we put bars on top of the symbols is to distinguish functions

and relations as they appear in formulae from the way that discuss them.

Chapter 2. First-Order Logic Page 31

We have special terms when n = 1; 2; 3.

Convention.

1. A 1-ary relation is commonly called a unary relation.

2. A 2-ary relation is commonly called a binary relation.

3. A 3-ary relation is commonly called a ternary relation.

These notions are not new to us.

Example 2.1.3 (Some Familiar n-ary Relations).

1. Equality is a binary relation on any set.

2. ≤ is a binary relation on R.

3. {x ∈ Z | x is even} is a unary relation on Z.

Admittedly, the fact that the third example is precisely a set is a little unusual to see. This is

because in practice, the following convention is used.

Convention. Let R ⊆ An be a relation on some set A. For all (a1; : : : ; an) ∈ An, when we

write

R(a1; : : : ; an)

or say that

R(a1; : : : ; an) holds

we mean that (a1; : : : ; an) ∈ R.

We are now ready for the most important definition of this chapter.

Definition 2.1.4 (First-Order Structure). A first-order structure is the following data:

1. a non-empty set A called the domain of A.

Chapter 2. First-Order Logic Page 32

2. a set of relations on A

{
Ri ⊆ Ani

∣∣∣ i ∈ I}
3. a set of functions on A

{
fj : A

mj → A
∣∣∣ j ∈ J}

4. a set of constants that are elements of A

{ck ∈ A | k ∈ K}

where I; J; K are index sets that can be empty.

Usually, the index sets of a first-order structure are subsets of N, but in principle, they could be any

set. We package the information about the constants and the arity of the functions and relations

together in the following manner.

Definition 2.1.5 (Signature). Let A be a first-order structure. The signature of A is the

information

{ni | i ∈ I} {mj | j ∈ J} K

with the respective sets describing the arity of the relations on A, the arity of the functions

on A, and the index set of the constants in A.

We use the following notation for first-order structures.

Convention. For a first-order structure A given as above, we wil deonte

A =
¨
A;
{
Ri
}
i∈I ;

{
fj
}
j∈J ; {ck}k∈K

∂
More generally, we use the notation

Structure = ⟨Domain;Relations;Functions;Constants⟩

Often, we even drop the { } when describing first-order structures: for instance, we would

Chapter 2. First-Order Logic Page 33

simply write

⟨Z; =;+;−; 0⟩

as opposed to

⟨Z; {=} ; {+;−} ; {0}⟩

to describe the group of integers along with the relation of equality, the binary function of

addition, the unary function of inversion by sign chance, and the identity 0.

We have encountered any number of first-order structures so far. Here are a few examples.

The first is a very basic example.

Example 2.1.6 (Orderings). We can take A to be one of the sets N;Z;Q;R. We can

define a first-order structure on A with only one unary relation—that of ordering—and no

functions or constants.

It is important to note that while the sets N;Z;Q;R all admit richer structures on them, they are

not needed to define ordering. We don’t even include equality in this description because a formula

that contains an equality symbol is not about ordering.

In the next example, we look at an algebraic structure.

Example 2.1.7 (Groups). Every group is a first-order structure with the following data.

1. The domain is the set of elements of the group.

2. The sole relation is the binary relation of equality.

3. There is a binary function for the group operation and a unary function for inversion.

4. There is a constant for the identity element.

We can make a similar definition for rings.

We do not even need to talk about objects that we usually deal with as sets. We can also talk

about graphs, which, while defined in terms of sets, are usually studied visually.

Chapter 2. First-Order Logic Page 34

Example 2.1.8 (Graphs). Graphs (or, more precisely, their vertices), along with two bi-

nary relations—equality and adjacency—and no functions or constants, form a first-order

structure.

2.1.2 First-Order Languages

We are now ready to formally define the notion of first-order languages.

Definition 2.1.9 (First-Order Language). A first-order language L consists of the fol-

lowing data.

1. Index sets I; J; K where I is non-empty but J and K can be empty.

2. An alphabet of symbols, consisting of

(a) Variables x0 x1 x2 · · ·

(b) Connectives ¬ →

(c) Punctuation () ;

(d) The Quantifier ∀

(e) Relation symbols Ri for i ∈ I

(f) Function symbols fj for j ∈ J

(g) Constant symbols ck for k ∈ K

3. An arity for every relation and function symbol.

The arity and cardinality information of a first-order language is encoded in the following manner.

Definition 2.1.10 (Signature). Let L be a first-order language with index sets I; J; K such

that I is non-empty and

1. The relations {Ri | i ∈ I} have arities {ni | i ∈ I}

2. The functions {fj | j ∈ J} have arities {mj | j ∈ J}

3. The constants are given by {ck | k ∈ K}

The information

{ni | i ∈ I} {mj | j ∈ J} K

Chapter 2. First-Order Logic Page 35

is called the signature of L.

In principle, one should very precisely define punctuation rules and the general notation for express-

ing formulae in a first-order language. Indeed, what this means is that one should define what it

means for a string of symbols to be ‘well-formed’. This is somewhat laborious, so we simply adopt

the following convention.

Convention. We use the punctuation symbols

() ;

in the following manner.

• We enclose all expressions involving connectives in parentheses, barring those involving

a single variable or a single constant.

• We enclose statements of the form “∀x” in parentheses.

• We denote applications functions f by f (· · ·) and relations R by R(· · ·).

• We use commas to separate the arguments of functions and relations.

There are numerous symbols in first-order languages. It makes sense to isolate the ones that form

the ‘objects’ with which we ‘reason’ in this language.

Definition 2.1.11 (Terms). Let L be a first-order language. The set of terms of L is the

smallest set such that

1. Every variable is a term.

2. Every constant is a term.

3. If t1; : : : ; tn are terms and f is an n-ary function symbol, then f (t1; : : : ; tn) is a term.

Moreover, we shall stipulate that every term arises in this manner.

We can define very basic first order languages.

Example 2.1.12. Let L be a first-order language such that

1. There are no relations

Chapter 2. First-Order Logic Page 36

2. There is a binary function f

3. There are two constants c1; c2

Some terms of L are

c1 c2 x1 f (c1; c2) f (x1; c1) f (x1; f (c1; c2)) f (f (c1; x1) ; c2)

There are many other terms. Note that we automatically assumed the existence of variables

x1; x2; : : :, which is consistent with Definition 2.1.9.

Non-Example 2.1.13. Let L be the first-order language given in Example 2.1.12. A string

of symbols from the alphabet of L that is not a term is

f f x1

The reason for this is that x1 is not applied to f , and even if we were to ignore the punctuation

convention of writing function arguments inside parentheses, we would have that the arity

of f is violated, because a function of two variables is being applied (twice) to a single input

(or the leftmost f is being applied to both f and x1, which contradicts the fact that f takes

inputs that are both terms, and f alone is not a term). It is precisely to avoid ambiguities of

this sort that we have punctuation conventions; either way, in this case, there are too many

errors for f f x1 to be a term in L.

We now define a way of using the quantifiers and connectives of first-order language s to build

formulae. The idea is to define a fundamental notion of formulae using purely the relations of the

language and then define how more complex formulae can be built from them.

Definition 2.1.14 (Atomic Formula). Let L be a first-order language. An atomic formula

of L, or an L-atomic formula, is an expression of the form

R(t1; : : : ; tn)

where R is an n-ary relation symbol in L and t1; : : : ; tn are terms.

Note that in the above definition, we do not require the inputs t1; : : : ; tn to be variables or constants.

Chapter 2. First-Order Logic Page 37

We merely require them to be terms. This means they could be variables, constants, or outputs of

functions applied to other terms. Being ‘atomic’ has only to do with being the output of a relation

symbol. We can now define what a formula is in a broader sense.

Definition 2.1.15 (Formula). Let L be a first-order language. The formulae of L, or the

L-formulae, are defined as follows.

1. Every atomic formula is a formula.

2. If ffi is a formula, then so is (¬ffi).

3. If ffi and are formulae, then so is (ffi→).

4. If ffi is a formula, then so is (∀x)ffi.

Moreover, we stipulate that every formula arises in this manner.

We can define very simple formulae in very simple first-order language s.

Example 2.1.16. Let L be a first-order language with

1. One unary relation symbol P and one binary relation symbol R

2. One binary function symbol f

3. Two constants c1 and c2

Then, the following are all atomic formulae:

P (x1) R(c1; x1) R(f (x1; c1) ; c2)

Similarly, the following are all formulae:

¬P (x1) (P (x1) → R(c1; x1)) (∀x)R(x; c1)

There is a reason why we only allowed first-order language s to have connectives → and ¬ and

quantifier ∀: we can build the other connectives (∧;∨;↔; : : :) and the other quantifier (∃) from

these.

Definition 2.1.17 (The Existential Quantifier). Let L be a first-order language and let ffi

Chapter 2. First-Order Logic Page 38

be an L-formula. Then, we define

(∃x)ffi

to be shorthand for the formula

(¬ (∀x) (¬ffi))

We also define the other connectives as in propositional logic.

Definition 2.1.18 (Connectives). Let L be a first-order language. Let ffi and be L-

formulae. We define the connectives ∧;∨;↔; ↑; ↓ as follows:

(ffi ∧) is shorthand for (¬(ffi→ ¬))

(ffi ∨) is shorthand for ((¬ffi) →)

(ffi↔) is shorthand for ((ffi→) ∧ (→ ffi))

(ffi ↑) is shorthand for (¬(ffi ∧))

(ffi ↓) is shorthand for (¬(ffi ∨))

We are now ready to explore the utility of first-order logic in the study of mathematics, where we

relate the study of first-order structures to first-order languages.

2.1.3 First-Order Structures Revisited

Throughout this subsection, we will fix a first-order language L with signature

{ni | i ∈ I} {mj | j ∈ J} K

where the nis are the arities of the relation symbols Ri , the mj are the arities of the function

symbols fj , and K is the index set of the constants ck .

Definition 2.1.19 (First-Order Structures in First-Order Languages). A structure in L,

Chapter 2. First-Order Logic Page 39

or an L-structure, is a first-order structure

A =
¨
A;
{
Ri
}
i∈I ;

{
fj
}
j∈J ; {ck}k∈K

∂
(2.1.1)

such that the signature of A is the same as that of L, ie, the arities of the relations and

functions in A are the same as those in L.

If one takes a closer look at the definitions of first-order structures and first-order languages (resp.

Definition 2.1.4 and Definition 2.1.9), one notices that the former involves actual relations and

functions, which are defined as subsets of certain sets, whereas the latter merely involves function

and relation symbols. This is a crucial distinction.

Convention. The reason why we put bars on top of the symbols is to distinguish functions

and relations as they appear in first-order structures—with bars on top—from the way we

express them in the ambient first-order language.

For the remainder of this subsection, fix a first-order structure A. Denote its domain, relations,

functions and constants as in (2.1.1), with bars above as per our convention for this module. We

now discuss the significance of first-order structures and underscore the power and versatility of

first-order languages.

When we say, in Definition 2.1.19, that the signature of an L-structure is the same as that of the

first-order language L, we mean that the arities of the relations in the structure must match up

with the arities of the relation symbols in the language, and similarly for functions and constants.

More precisely, we have the following.

Definition 2.1.20 (Interpretation). Let A be an L-structure. The correspondence

Ri ! Ri fj ! fj ck ! ck

between relations, functions and constants in A and relation symbols, function symbols and

constant symbols in L is called an interpretation of L.

We have a special term for the “L to A” direction of this correspondence.

Chapter 2. First-Order Logic Page 40

Definition 2.1.21 (Valuation). Let A be an L-structure. A valuation in A is a function

v : {Terms of L} → A

that assigns terms of L to their interpretations in A in the following manner.

1. For all constant symbols ck in L, we have

v(ck) = ck

2. For all terms t1; : : : ; tm and m-ary function symbols f in L, we have

v(f (t1; : : : ; tm)) = f (v(t1) ; : : : ; v(tm))

where f is the interpretation of f in A.

The idea is that a first-order language gives a purely symbolic way of expressing relationships

between objects and their properties. When studying statements expressed in first-order languages,

one must purely view them symbolically, as formal expressions that do not carry any meaning per

se. The ‘meaning’ comes from valuations that allow us to interpret symbols in first-order languages

as ideas in first-order structures.

We have an existence and uniqueness result.

Lemma 2.1.22. Let A be an L-structure with domain A. Fix elements a0; a1; a2; : : : ∈ A.

There exists a unique valuation v of L in A such that v(xi) = ai for all i ∈ N.

Proof. We begin by showing existence. We can define v explicitly for all terms of L by performing

recursion on their length. For terms of length 1, we deal with the variables and the distinguished

constants separately.

1. v(xi) := ai for all i ∈ N

2. v(ck) := ck for all k ∈ K

Chapter 2. First-Order Logic Page 41

We can then define v for terms arising from functions and relations of arity ≥ 2 by setting

v(f (t1; : : : ; tm)) := f (v(t1) ; : : : ; v(tm))

for all terms t1; : : : ; tm and m-ary function symbols f in L with interpretation f in A. Such a valua-

tion is unique because if there are two valuations satisfying the condition on the variables, then they

agree on all terms of length 1 (because they must agree on all constants—see Definition 2.1.21).

The fact that they obey the recursion relation by definition then gives us the result.

Example 2.1.23 (Interpreting a Term in Groups). Let L have the following data.

1. Function symbols: a binary symbol m and a unary symbol i .

2. Relation symbols: a binary symbol R.

3. Constant symbols: a constant symbol e.

The following is an L-formula:

m(m(x0; x1) ; i(x0))

Consider the first-order structure A, meant to represent a group, with the underlying data.

1. Domain: G, a set.

2. Functions: the binary function m of multplication (the group operation) and the unary

function i of inversion.

3. Relations: the binary relation R of equality.

4. Constants: the identity element e.

Fix arbitrary group elements g; h ∈ G. We know, from Lemma 2.1.22, that there exists a

unique valuation v of L in A such that v(x0) = g and v(x1) = h. This valuation will allow

us to interpret the formula above as a statement about the group elements g and h:

v(m(m(x0; x1) ; i(x0))) = m(v(m(x0; x1)) ; v(i(x0)))

= m
(
m(v(x0) ; v(x1)) ; i(v(x0))

)
= m

(
m(g; h) ; i(g)

)
= m

(
g · h; g−1

)
= ghg−1

Chapter 2. First-Order Logic Page 42

If we had defined the structure A a little differently—for example, if we had defined

m(g; h) := hg instead—then the interpretation of the formula in A would have been dif-

ferent, despite the formula itself being exactly the same in L. This illustrates the role

of valuations and interpretations in moving between purely formal, syntactic expressions in

first-order languages to meaningful expressions or statements in first-order structures.

Remark. It is worth remarking that in the above example, we use the = symbol somewhat

frivolously. On the one hand, left- and right-hand sides of each equation lie in G, and = can

be understood as equality in A. However, one can also view these as being a syntactic equalities in

A, since the properties we use to manipulate the above expressions are independent of the group

structure of A. The only simplifications we make come from the definitions of v, m, and i (for

that matter, we can even view · and −1 as notation for m and i instead of viewing m and i as

notation for · and −1). We sidestep these syntactic nuances in this module, but we do mention

that a more syntax-heavy treatment is necessary for a computer-scientific study of first-order logic.

With this, we have studied first-order languages and structures in sufficient detail to be able to

talk about how we can express and implement ideas from propositional logic in first-order logic.

2.2 A Bridge between Propositional and First-Order Logic

The purpose of this section is to discuss how ideas in propositional logic can be expressed in

first-order logic. As we might expect from Definition 2.1.9, first-order logic is a generalisation of

propositional logic. We will use this section to make this precise.

We will begin by making rigorous the notion of logical validity. We will see a connection with

tautologies, which, as we know, are precisely the theorems of propositional logic. We will explore

notions like satisfaction and substitution to make this precise.

2.2.1 Valuations Satisfying Formulae

For the remainder of this subection, fix some first-order language L and some L-structure A. We

begin by defining a notion of equivalence for valuations that is weaker than equality.

Chapter 2. First-Order Logic Page 43

Definition 2.2.1 (Equivalence with respect to a Variable). Suppose xl is a variable in L

and valuations v;w of L in A. We say that v and w are xl-equivalent if for all i ∈ N\{l},

we have v(xi) = w(xi).

One way to see that this notion is weaker than equality of valuations is that if valuations agree

on all variables, then by Lemma 2.1.22, they must be equal. The fact that there is one variable

on which they may differ is what makes this notion weaker. We also emphasise that we only

stipulate that xl -equivalent valuations need not agree on xl , not that they must not agree on xl .

In particular, equal valuations are equivalent with respect to all variables.

We are now ready to define precisely what it means for a valuation to satisfy a formula. The idea is

that in a general setting—ie, in a first-order language—formulae do not express any properties, and

without an interpretation in a first-order structure, it is not very meaningful to talk about what it

means for a formula to be ‘true’. A valuation translates formulae into ‘meaningful statements’, and

therefore, informally, we can think of a valuation satisfying a formula as meaning that it translates

a general formula into some interpretation that we know to be ‘true’ in some sense.

Definition 2.2.2 (Satisfaction). Let ffi be an L-formula and v a valuation of L in A. We

can define what it means for v satisfies ffi in A recursively on the number of connectives

or quantifiers in ffi.

1. If ffi is an atomic formula, ie, has no connectives or quantifiers, then we know ffi is of

the form R(t1; : : : ; tn) for some n-ary relation R and terms t1; : : : ; tn in L. In this

case, we say that v satisfies ffi in A if the relation

R(v(t1) ; : : : ; v(tn))

holds in A, ie, if (v(t1) ; : : : ; v(tn)) ∈ R ⊆ An.

2. If ffi is not an atomic formula in L, then we know ffi is of one of the following forms.

(a) If ffi is of the form (¬) for some L-formula , then we say that v satisfies ffi

in A if v does not satisfy in A.

(b) If ffi is of the form (→ ffl) for L-formulae and ffl, then we say that v satisfies

ffi in A if it is not the case that v satisfies in A and v does not satisfy ffl in A.

Chapter 2. First-Order Logic Page 44

(c) If ffi is of the form (∀x) for some L-formula , we say v satisfies ffi in A if

for all variables x , if w is a valuation of L in A that is x-equivalent to v, then w

satisfies in A.

In all three cases, we have define what it means for v to satisfy ffi in terms of what

it means for v to satisfy formulae with one fewer connectives or quantifiers than ffi,

making the recursion well-defined.

If v satisfies ffi in A, we write v[ffi] = T, and if v does not satisfy ffi in A, we write v[ffi] = F.

We remark that the notation v[ffi] = T is merely shorthand for a statement of fact. It does not

actually represent an equality in some setting where both T and v[ffi] are defined. The same goes

for v[ffi] = F. However, it is often convenient to abuse notation.

Convention. Given valuations v;w of L in A, we write

v[ffi] = w[ffi]

to denote the condition that

v[ffi] = T if and only if w[ffi] = T

or the equivalent condition that

v[ffi] = F if and only if w[ffi] = F

This notion of a valuation satisfying a formula tells us what it means for a formula to hold true in

a structure for a given assignment of meaning to the first-order language symbols in the formula.

We can define a more absolute notion of truth.

Definition 2.2.3 (Truth of a First-Order Formula in a First-Order Structure). Let ffi be

an L-formula. We say ffi is true in A, or that A is a model of ffi, if v[ffi] = T for all

valuations v of L in A. We denote this by A |= ffi.

A first-order formula true in one structure might not be true in another.

Chapter 2. First-Order Logic Page 45

Example 2.2.4. Let L have one binary relation. Consider the atomic formula

(∀x1) (∃x2)R(x1; x2) (2.2.1)

This formula is true in structures like ⟨N;<⟩, ⟨Z; <⟩, and ⟨Z; >⟩.

Non-Example 2.2.5. Let L be as above. The formula (2.2.1) above is NOT true in ⟨N;>⟩,

because 0 does not have a predecessor in N. The reason for this is that relation inputs are

ordered (ie, relations are not, in general, symmetric).

Despite being valuation-indepentent, given that the truth of formulae is structure-dependent, it

is still not the strongest notion of truth we can define in first-order logic. We want theorems

to be stronger and more ‘absolute’ notions of truth. To that end, we define logical validity, a

structure-independent notion of truth.

Definition 2.2.6 (Logical Validity). Let ffi be an L-formula. We say that ffi is logically valid

if A |= ffi for all L-structures A.

Logically valid formulae in first-order logic are meant to be analogues of tautologies in propositional

logic. An important difference, though, is that in propositional logic, there is an algorithm that

decides whether a given formula is a tautology. In first-order logic, this is not usually the case, as

we shall see when we study Gödel’s Incompleteness Theorem.

Example 2.2.7. For all L-formulae ffi, the formula

((∃x1) (∀x2)ffi→ (∀x2) (∃x1)ffi)

is logically valid.

Proof. sorry

Non-Example 2.2.8. Given an L-formulae ffi, the formula

((∀x1) (∃x2)ffi→ (∃x2) (∀x1)ffi)

Chapter 2. First-Order Logic Page 46

is not necessarily logically valid.

Proof. sorry

2.2.2 Substitution

In this section, we will discuss how replacing propositional variables in propositional formulae with

first-order formulae gives a bridge between the two kinds of logic. For the remainder of this

subection, fix

• a natural number n

• a first-order language L

• L-formulae ffi1; : : : ; ffin

• propositional variables p1; : : : ; pn

• a propositional formula ffl with propositional variables p1; : : : ; pn (cf. Definition 1.1.3)

We have a name for replacing the pi ffl with ffii .

Definition 2.2.9 (Substitution Instance). The substitution instance of ffl with

ffi1; : : : ; ffin is the L-formula obtained by replacing each propositional variable pi in ffl with

the L-formula ffii .

Remark. We underscore here that a substitution instance is a formula in L, not a propositional

formula, because the terms of which it is made are all L-formulae rather than propositional variables.

For the remainder of this subsection, denote by „ the substitution instance of ffl with ffi1; : : : ; ffin.

Substitution is our gateway for ‘embedding’ propositional logic into first-order logic. This ‘embed-

ding’ preserves ‘truth’ in the following manner.

Theorem 2.2.10. If ffl is a tautology, then „ is logically valid.

Chapter 2. First-Order Logic Page 47

Proof. Assume that ffl is a tautology (cf. Definition 1.1.9). To show that „ is logically valid, we

need to show that A |= „ for all L-structures A. To that end, let A be an L-structure and let v

be a valuation of L in A. We need to show that v[„] = T. sorry

It is tempting to ask whether all logically valid formulae are substitution instances of tautologies.

Such a fact would truly make the above result a two-way bridge. Unfortunately, this is not true,

as shown by the following counterexample.

Counterexample 2.2.11. For all L-formulae ffi, the L-formula

((∃x2) (∀x1)ffi→ (∀x1) (∃x2)ffi)

is logically valid. However, it is not a substitution instance of any propositional formula,

because there is no notion of quantification in propositional logic.

This tells us that first-order logic is not only stronger than propositional logic, it is strictly

stronger.

2.3 Variables and the Universal Quantifier

The purpose of this section is to understand how to work with variables and the universal quantifier

in first-order languages. Throughout this section, fix a first-order language L.

2.3.1 Bound and Free Variables

Consider the formula

 1 : (R1(x1; x2) → (∀x3)R2(x1; x3)) (2.3.1)

where R1; R2 are relation symbols in L and x1; x2; x3 are variables in L. Intuitively, we do not want

x3 to ‘exist’, or be ‘known’ or ‘accessible’, outside of the sub-formula1 (∀x3)R2(x1; x3). We can

mae this notion precise.

1When we say sub-formula, we mean exactly what it sounds like: since formulae are built from smaller formulae
using connectives and the quantifier, when we say sub-formula, we mean a formula that arose at an intermediate
step in this inductive construction of the formula of which it is a sub-formula.

Chapter 2. First-Order Logic Page 48

Definition 2.3.1 (Scope of a Quantifier). Suppose ffi and are L-formulae. If (∀xi)ffi

occurs as a sub-formula of , we say that ffi is the scope of (∀xi) in .

Example 2.3.2. In (2.3.1), R2(x1; x3) is the scope of the quantifier (∀x3).

We use the existence of a scope to characterise variables.

Definition 2.3.3 (Bound Variables). Let be an L-formula and let xj be a variable that

appears in . We say that xj is bound in if it is within the scope of a quantifier.

Example 2.3.4. In (2.3.1), the variable x3 is bound, because it lies in the scope R2(x1; x3)

of the quantifier (∀x3).

We also have a special name for variables that are not bound.

Definition 2.3.5 (Free Variables). Let be an L-formula and let xj be a variable that

appears in . We say that xj is free in if it is not bound in .

Example 2.3.6. In (2.3.1), the variable x1 is bound, because it does not lie in the scope

of any quantifiers, meaning it is not bound.

The same variable can have both free and bound occurrences within a given formula.

Example 2.3.7. In the formula

((∀x1)R1(x1; x2) → R2(x1; x2))

the variable x1 is bound in the expression

(∀x1) R1(x1; x2)︸ ︷︷ ︸
scope of (∀x1)

Chapter 2. First-Order Logic Page 49

but free in the expression

R2(x1; x2)

We can also show that existentially quantified variables are bound.

Lemma 2.3.8. Let and ffi be an L-formulae. If contains

(∃x1)ffi

as a sub-formula, then x1 is bound in .

Proof. This follows immediately from the definition of the existential quantifier. sorry

The occurrence of free variables inside a formula means that it is very general, as the variables in

it are purely formal symbols that we have no machinery to reason with. We give a special term

to, and have a special interest in, formulae with no free variables.

Definition 2.3.9 (Closed Formulae). An L-formula with no free variables is called a closed

formula or a sentence.

Formulae that are not closed can be thought of as being ‘dependent’ on their free variables, in the

sense that we would intuitively want to only define a notion of substitution only for free variables.

To that end, we adopt some notation.

Convention. Let be an L-formula. If L has free variables x1; : : : ; xn, then we denote

by

 (x1; : : : ; xn)

when we wish to underscore the dependence of on x1; : : : ; xn or the fact that x1; : : : xn

are free in or perform a substitution.

We now define substitution.

Chapter 2. First-Order Logic Page 50

Definition 2.3.10 (Substitution). Let t1; : : : ; tn be terms in L and (x1; : : : ; xn) an L-

formula with free variables x1; : : : ; xna. We define the formula obtained by substituting

the ti for the xi to be the L-formula obtained by replacing each occurrence of xi in with

an occurrence of the corresponding ti . We denote this formula

 (t1; : : : ; tn)

aBy the aforementioned convention, we would ordinarily not mention that x1; : : : ; xn are free in .

2.3.2 An Analogue of Completeness

Throughout this subsection, fix an L-formula ffi and an L-structure A.

We begin by mentioning a result about valuations.

Theorem 2.3.11. Fix n ∈ N∪{0}. If ffi has free variables x1; : : : ; xn and v;w are valuations

of L in A with v(xi) = w(xi) for all 1 ≤ i ≤ n, then

v[ffi] = T if and only if w[ffi] = T

In other words, we have v[ffi] = w[ffi].

Proof. Fix valuations v and w of L in A that agree on all the free variables of ffi. We argue that

v[ffi] = w[ffi] by performing induction on the total number connectives and quantifiers in ffi.

The base case is when ffi has no connectives or quantifiers, ie, when ffi is atomic in terms that

contain no quantifiers. In this case, we have that ffi is of the form

R(t1; : : : ; tm)

where t1; : : : ; tm are terms that contain no quantifiers. In this case, each ti is either a constant

or a variable. Since ffi is assumed not to contain any quantifiers, the ti that are variables must be

free variables, and the rest must be constants. Since v and w agree on all constants by definition

and on all free variables by assumption, we must have v(ti) = w(ti) for all i . Then, sorry

Chapter 2. First-Order Logic Page 51

This gives us a completeness-like result about closed formulae.

Corollary 2.3.12. If ffi is closed, then either A |= ffi or A |= (¬ffi).

Proof. If ffi is closed, ffi has no free variables. Then, any two valuations of L in A agree vacuously

on the set of all free variables of ffi. Therefore, there cannot be two distinct valuations such that

one satisfies ffi and one does not. In other words, either ffi is true in A or ffi is not true in A.

Equivalently, either ffi or (¬ffi) is true in A.

2.3.3 Understanding the Universal Quantifier

The purpose of this subsection is to discuss the relationship between the syntax and the semantics

of the universal quantifier ∀. We have not been too precise so far about what it means to write

an expression like

(∀x1)ffi

for some formula ffi with a bound variable x1. We particularly delve into nuances that arise due

to the fact that in our strict syntactic definition of L-formulae (Definition 2.1.15, we only allow

the quantifier to be succeeded by a variable in L, which must be one of x1; x2; : : :. The really

confusing thing about this syntactic definition of the universal quantifier is the fact that it is not

obvious that this quantifier means “for all”: instead of saying “for all variables x1, we have ffi”, on

a strictly syntactic level, the expression (∀x1)ffi is using the specific variable x1.

What we would want—say, in an interactive theorem prover like Lean—is a mechanism to be able

to remove the quantifier and instead introduce a free variable into our formula and label that

variable differently from all other free and bound variables in our formula.

In this subsection, we will make this notion precise. Throughout, fix a first-order language L and

a first-order structure A in L. Denote the domain of A by A.

We begin by describing what it means for a structure to model a formula under a valuation.

Chapter 2. First-Order Logic Page 52

Definition 2.3.13. Let (x1; : : : ; xn) be an L-formula whose free variables are x1; : : : ; xn.

Let a1; : : : ; an ∈ A be constants. We say that A models (a1; : : : ; an), denoted

A |= (a1; : : : ; an)

if v[] = T for every valuation v of L in A.

Note that by Lemma 2.1.22, to prove that A |= (a1; : : : ; an), it suffices to prove that v[] = T

for some valuation v of L in A.

We would want to be able to use the quantifier ∀ in the way that we are used to using it. In other

words, from a hypothesis

(∀x1)ffi(x1)

we would want to be able to deduce

ffi(t)

for any term t in L. Unfortunately, given that x1 is itself a term in L, and (∀x1)ffi(x1) is does not

involve some ‘general variable’ but the very concrete variable x1, this deduction is simply not true!2

Counterexample 2.3.14 (Indiscriminate specialisation is not a good idea). We provide a

counterexample that disproves the claim that we can indiscriminately specialise a formula

(∀x1)ffi(x1) to any L-term t to obtain a true statement ffi(t). More precisely, we give

• a first-order language L

• an L-structure A

• an L-formula ffi(x1) with a free variable x1

• an L-term t

2It is at times like this that it is particularly important to distinguish semantics and syntax. When we say “simply
not true”, that is an inherently semantic statement: syntactic reasoning is not a reasoning of truth, but one of
provability. What we are really attempting to do is establish motivation for the axioms of the formal deduction
system for a first-order language. We will see that in our formal system, we will not allow this type of deduction.
This section underscores that it is actually sensible to disallow this explicitly, because even in an ‘intuitive’ sense of
reasoning, this would not ‘make sense’.

Chapter 2. First-Order Logic Page 53

• a valuation v of L in A

such that

A |= (∀x1)ffi(x1)

but

v[ffi(t)] = F

Let L have one binary relation R and one unary relation S. Let

ffi(x1) : ((∀x2)R(x1; x2) → S(x1))

We can specialise this formula ffi via a substitution instance (cf. Definition 2.3.10). Let t

be the term x2. Since Definition 2.3.10 imposes no conditions on what can be substituted

for a free variable, we can substitute t for x1 in ffi. Then, we have that ffi(t) is the formula

(∀x2)R(x2; x2) → S(x2)

The problem with this substitution is that the x1 that served as the first argument of R prior

to substitution was free, whereas the x2 was bound to the quantifier (∀x2) that preceded

R(x1; x2). After substitution, both arguments of R are now bound to the quantifier (∀x2).

We can see this in the following model.

Let A = ⟨N;≤; (= 0)⟩. That is, A is the L-structure with the following data.

• The domain of A is N.

• The binary relation in A is the ordering ≤.

• The unary relation on A is the condition that the argument be equal to zero.

In this case, we can certainly see that

A |= (∀x1)ffi(x1)

because for any natural number x1, if x1 ≤ x2 for all natural numbers x2, then x1 = 0.

sorry

sorry

Chapter 2. First-Order Logic Page 54

2.4 A Formal System for First-Order Logic

The purpose of this section is to define, for any first-order language L, a formal deduction

system KL in which we can do first-order logic.

Throughout this section, fix a first-order language L.

2.4.1 The Formal Deduction System KL

Recall Definition 1.2.6, in which we define a formal deduction system. Informally, this is meant

to be a system in which we can perform deductions. The purpose of this subsection is to define

a formal deduction system for L.

Definition 2.4.1 (A Formal Deduction System for First-Order Logic). Define KL to be

the formal deduction system consisting of the following alphabet, formulae, axioms and

deduction rules.

1. Alphabet. The alphabet of KL is the alphabet of L (cf. Definition 2.1.9).

2. Formulae. The formulae of KL are the formulae of L (cf. Definition 2.1.15).

3. Axioms. For any L-formulae ffi; ; ffl and i ∈ N, the axioms of KL in ffi; ; ffl and xi

are the following distinguished L-formulae:

(A1) (ffi→ (→ ffi))

(A2) ((ffi→ (→ ffl)) → ((ffi→) → (ffi→ ffl)))

(A3) (((¬ffi) → (¬)) → (→ ffl))

(K1) ((∀xi)ffi(xi) → ffi(t)) where t is a term free for xi in ffi (cf. sorry) and ffi can

have other free variables.

(K2) ((∀xi) (ffi→) → (ffi→ (∀xi))) if xi is not free in ffi.

4. Deduction Rules. For any L-formulae ffi; and i ∈ N, the deduction rules for KL

in ffi; ; xi are

(MP) Modus Ponens: From ffi and (ffi→), deduce .

(Gen) Generalisation: From ffi, deduce (∀xi)ffi.

We define deductions identically to how we did for arbitrary formal deduction systems.

Chapter 2. First-Order Logic Page 55

Definition 2.4.2 (Deductions in KL). A deduction in KL is a finite sequence of KL-

formulae such that each either is one of the following:

• an axiom of KL.

• a formula in Σ.

• deduced from a previous formula in the sequence via the deduction rule (MP).

• deduced from a previous formula in the sequence via the deduction rule (Gen) with the

restriction that when (Gen) is applied to deduce (∀xi)ffi from ffi, xi does not appear

as a free variable in any formula of Σ that is used in the deduction of ffi.

We write

Σ ⊢KL

to mean that a KL-formula occurs at the end of a deduction from Σ.

We can similarly define proofs.

Definition 2.4.3 (Proofs in KL). A proof in KL is a finite sequence of deductions made

from the empty set.

Theorems are the results deduced in proofs.

Definition 2.4.4 (Theorems in KL). A theorem of KL is a KL-formula that occurs at the

end of a proof. We write

⊢KL

to mean that is a theorem of KL.

There is a very deep reason why we restrict the use of (Gen) to deduce (∀xi)ffi from ffi in Defini-

tion 2.4.2 and the subsequent definitions of proofs and theorems in KL. Unfortunately, we are not

yet in a position to discuss it. But we will in due course: see Counterexample 2.4.9.

Chapter 2. First-Order Logic Page 56

2.4.2 Tools for Deduction

An important objective of our discussion on the formal system KL is to show that the theorems

of KL are precisely the logically valid formulae. In Section 2.2, we established a bridge between

Propositional and First-Order Logic. In particular, we showed that the theorems in the formal

system L—that is, the tautologies—are all logically valid (see Theorem 2.2.10). We can actually

show something stronger.

Theorem 2.4.5. Let ffi be an KL-formula that is a substitution instance of a tautology in

propositional logic. Then, ⊢KL ffi.

Proof. sorry

While the above gives us a way of dealing with formulae that come from first-order logic, we also

have a way of getting access to the first of two formulae linked by a → connective.

Theorem 2.4.6 (Deduction Theorem for KL). Let Σ be a set of L-formulae and let ffi and

 be L-formulae. If Σ ∪ {ffi} ⊢KL , then Σ ⊢KL (ffi→).

Proof. sorry

2.4.3 Soundness

In this subsection, we show one direction of our claim that the theorems of KL are precisely the

logically valid formulae (cf. Definition 2.2.6).

Theorem 2.4.7 (Soundness Theorem for KL). Let ffi be a KL-formula. If ⊢KL ffi, then

|= ffi. In other words, if ffi is a theorem of KL, then ffi is logically valid.

Proof. As with the proof of the Deduction Theorem (Theorem 2.4.6), we follow the proof of the

Soundness Theorem for L (Theorem 1.3.5). Our strategy for showing that all formulae deduced

from the empty set are logically valid will be to prove the following.

Chapter 2. First-Order Logic Page 57

1. The axioms of KL are logically valid.

We do not need to worry about the axioms (A1), (A2) and (A3), because they are substitu-

tion instances of propositional tautologies, making them logically valid by Theorem 2.2.10.

Furthermore, the axiom (K1) is logically valid by sorryFinally, the axiom (K2) is logically

valid by sorry

2. Deductions preserve logical validity.

sorry

We have an important corollary that mirrors sorry

Corollary 2.4.8. Let Σ be a set of KL-formulae and let be a KL-formula. Suppose that

Σ ⊢KL

Then, for any L-structure A and valuation v of L in A, if v[ff] = T for every ff ∈ Σ, then

v[ffi] = T.

Proof. sorry

We are now in a position to comment on the restriction we impose on the use of the deduction

rule (Gen) in Definition 2.4.2 and the subsequent definitions of proofs and theorems in KL. We

want our formal system to be sound, but it turns out that if we did not have this restriction, we

would be able to construct a counterexample disproving soundness.

Counterexample 2.4.9 (Disproving soundness when we allow unrestricted use of (Gen)).

If we allowed (Gen) to deduce (∀xi)ffi from formulae in which xi occurs freely, in a language

L with a unary relation R, we would have

{R(x1)} ⊢KL (∀x1)R(x1)

Chapter 2. First-Order Logic Page 58

In structures, such a statement would make no sense, as it would say that we can deduce

a fact about all constants from a fact about a single constant. Indeed, by the Deduction

Theorem (Theorem 2.4.6), if {R(x1)} ⊢KL (∀x1)R(x1), then we would have

⊢KL (R(x1) → (∀x1)R(x1))

However, in an L-structure like A = ⟨N; (= 0)⟩, with domain N and unary relation being

the condition that an element be equal to 0, we have

A ̸|= (R(x1) → (∀x1)R(x1))

because if you take the valuation v that maps x1 to 0 ∈ N, we have that

v((R(x1) → (∀x1)R(x1))) = F

because indeed, it is the case that x1 = 0 and v[(∀x1)R(x1)] = F for any valuation that

maps x1 to 0. In particular, we would have that

̸|= (R(x1) → (∀x1)R(x1))

In other words, despite having the deduction

⊢KL (R(x1) → (∀x1)R(x1))

the formula

(R(x1) → (∀x1)R(x1))

would not be a valid theorem in L. This is a direct contradiction of the Soundness Theorem

(Theorem 2.4.7). Therefore, the restriction on the use of (Gen) is necessary for soundness.

Apart from offering an explanation for the restriction on the use of the deduction rule (Gen) in

first-order logic, the Soundness Theorem gives us more properties we can use to make deductions.

It brings us an important step closer to proving that the theorems of first-order logic are precisely

the logically valid formulae.

Chapter 2. First-Order Logic Page 59

2.4.4 Consistency

Again, there is some overlap with propositional logic.

Definition 2.4.10 (Consistency). A set Σ of KL-formulae is consistent if there is no

formula ffi such that

Σ ⊢KL ffi and Σ ⊢KL (¬ffi)

The Soundness Theorem allows us to prove an important result.

Theorem 2.4.11 (The Consistency Theorem). The empty set ∅ of KL-formulae is consis-

tent.

Proof. sorry

Convention. We say KL is consistent.

For the remainder of this subsection, fix a set Σ of KL-formulae. We mention an analogue of the

intuitive idea that ‘a proof of False yields anything’.

Proposition 2.4.12. If Σ is inconsistent, then for all KL-formulae ffl, we have

Σ ⊢KL ffl

Proof. sorry

We state a few more consistency results that are analogous to propositional logic. Give

cross

refer-

ences!

Proposition 2.4.13. Suppose Σ is consistent and consists entirely of closed KLformulae.

Let ffi be a closed KL-formula. If Σ ̸⊢KL ffi, then Σ ∪ {(¬ffi)} is consistent.

Proof. sorry

Chapter 2. First-Order Logic Page 60

Proposition 2.4.14 (Analogue of Lindenbaum’s Lemma). Suppose Σ consists entirely of

closed KL-formulae. There is a consistent set Σ∗ of closed KL-formulae such that Σ ⊆ Σ∗.

Proof. sorry

The above results have important consequences that we will discuss in the next section. These

will be instrumental in proving a converse result for Theorem 2.4.7.

2.4.5 Model Existence

In this subsection, we state and sketch the proof of an important result that will serve as a stepping-

stone towards proving converse of the Soundness Theorem for KL, known as the Completeness

Theorem.

First, we introduce some notation.

Convention. Let A be an L-structure and Σ a set of L-formulae. We write

A |= Σ

if for all ff ∈ Σ, A |= ff.

We have a rather surprising existence result for a model for any consistent set of closed formulae.

Theorem 2.4.15 (Model Existence Theorem). Suppose L is a countable first-order lan-

guage and Σ is a consistent set of L-formulae. Then, there is a countable L-structure A

such that A |= Σ.

Proof Sketch. This is quite a lengthy proof, so we do not give more than a sketch here. The

details can be found in [1, Appendix A.2]. There are several steps.

Step 1. Extending our Language.

We define a new language L+ that is an extension of L with countably many constant

Chapter 2. First-Order Logic Page 61

symbols. That is, the constants in L+ are the constants in L together with countably many

new constants b0; b1; b2; : : :. Note that L+ is also countable because L is, and we only add

countably many new constants.

Step 2. Adding Witnesses.

We can regard Σ as a set of closed L+-formulae. It is possible to prove that Σ is still

consistent as a set of L+-formulae. In fact, we can extend Σ to a set Σ∞ ⊇ Σ such that

• every formula in Σ∞ is closed

• for every L+-formula „(xi) with one free variable xi , there exists some constant bj in

L+ such that

Σ∞ ⊢KL+ ((¬ (∀xi) „(xi)) → (¬„(bj)))

This formula essentially says

Σ∞ ⊢KL+ (((∃xi) (¬„(xi))) → (¬„(bj)))

and we say “bj witnesses the existence of xi satisfying (¬„(xi))”.

We say that this process of constructing Σ∞ “adds witnesses.”

Step 3. Constructing a Complete Set of Formulae.

We can now apply Lindenbaum’s Lemma (Proposition 2.4.14) to Σ∞: there exists a consis-

tent set Σ∗ of closed L+-formulae such that for every closed L+-formula ffi, we have either

Σ∗ ⊢KL+ ffi or Σ∗ ⊢KL+ (¬ffi). We will not use Σ∗ right away, but it will soon become clear

what the relevance of this set is.

Step 4. Constructing an L+-structure.

sorry

Step 5. A Result on L+.

sorry

Chapter 2. First-Order Logic Page 62

Step 6. Restricting Step 5. to L.

sorry

What’s more surprising than the actual existence result is the accompanying countability result:

the model we constructed above is countable!

It turns out that the Model Existence Theorem has a very important consequence. So important

is this consequence that we shall give it its own subsection.

2.4.6 Compactness

We now state and prove one of the most important theorems of first-order logic, known as the

Compactness Theorem.

Theorem 2.4.16 (The Compactness Theorem for First-Order Logic). Assume that L is a

countable first-order language. Let Σ be a set of closed L-formulae. If every finite subset

of Σ has a model, then Σ has a model.

Proof. Suppose Σ has no model. Then, by the Model Existence Theorem (Theorem 2.4.15), Σ

must be inconsistent (because if it is consistent, Theorem 2.4.15 tells us it must have a model).

If Σ is inconsistent, there exists an L-formula ffl such that Σ ⊢KL ffl and Σ ⊢KL (¬ffl). Since

deductions in KL are finite, there is a finite subset Σ0 ⊆ Σ such that Σ0 ⊢KL ffl and Σ0 ⊢KL (¬ffl).

This makes Σ0 inconsistent. However, by our assumption that every finite subset of Σ has a model,

we have that Σ0 has a model. This contradicts the Soundness Theorem (Theorem 2.4.7), because

it tells us that we then have a model of both ffl and (¬ffl), which the Soundness Theorem does not

allow. Therefore, Σ must have a model. prove

this

as a

corol-

lary

in the

sound-

ness

sec-

tion

We are now ready for the converse of the Soundness Theorem.

Chapter 2. First-Order Logic Page 63

2.4.7 Completeness

Our strategy will be to first prove the result for closed formulae and then prove it in general.

We begin by introducing some notation.

Convention. Let Σ a set of L-formulae and ffi an L-formula. We write

Σ |= ffi

if every model of Σ is a model of ffi. That is, Σ |= ffi if for every L-structure A, it holds that

if A |= Σ, then A |= ffi.

We are now in a position to prove the converse of the Soundness Theorem for KL for closed

formulae. It turns out to be a consequence of the following important theorem.

Theorem 2.4.17. Let Σ be a set of closed L-formulae and ffi a closed L-formula. If Σ |= ffi,

then Σ ⊢KL ffi.

Proof. sorry

The case when Σ = ∅ gives us a converse of the Soundness Theorem for KL for closed formulae.

Corollary 2.4.18 (A Partial Converse of Soundness). Let ffi be a closed L-formula. If |= ffi,

then ⊢KL ffi.

Proof. When Σ = ∅, we do, indeed have that Σ |= ffi is the same as |= ffi: for any L-structure

A, since A vacuously models every element of Σ, the condition that if A |= ff for all ff ∈ Σ then

A |= ffi is precisely the condition that A |= ffi. Theorem 2.4.17 then gives us that ⊢KL ffi.

It turns out that Corollary 2.4.18, a converse of the Soundness Theorem for closed formulae, gives

us everything we need to prove the result in general.

Chapter 2. First-Order Logic Page 64

Theorem 2.4.19 (Gödel’s Completeness Theorem for KL). Let ffi be any L-formula. If ffi

is logically valid, then ffi is a theorem of L. That is, if |= ffi, then ⊢KL ffi.

Proof. By Corollary 2.4.18, it suffices to consider the case where ffi is not closed, that is, where ffi

has free variables. sorry

2.5 First-Order Languages with Equality

In this section, we address a special type of first-order language: one that expresses the notion of

equality.

Convention. Denote by LE a first-order language with a distinguished binary relation sym-

bol E.

We begin with a discussion on the concept of equality.

2.5.1 The Axioms of Equality

We begin by syntactically defining the axioms we want our symbol E to obey for it to be considered

as representing a notion of equality.

Definition 2.5.1 (The Axioms of Equality). The Axioms of Equality are collected in a

set ΣE consisting of the following LE-formulae.

(E1) (∀x1)E(x1; x1)

(E2) (∀x1) (∀x2) (E(x1; x2) → E(x2; x1))

(E3) (∀x1) (∀x2) (∀x3) (E(x1; x2) → (E(x2; x3) → E(x1; x3)))

(E4) For each n-ary relation symbol R in LE,

(∀x1) · · · (∀x2n) (R(x1; : : : ; xn) ∧ E(x1; xn+1) ∧ · · · ∧ E(xn; x2n)) → (R(xn+1; : : : ; x2n))

(E5) For each n-ary function symbol f in LE,

(∀x1) · · · (∀x2n) ((E(x1; xn+1) ∧ · · · ∧ E(xn; x2n)) → E(f (x1; : : : ; xn) ; f (xn+1; : : : ; x2n)))

Chapter 2. First-Order Logic Page 65

We know these axioms by more familiar names: (E1) is called reflexivity; (E2) is called sym-

metry; (E3) is called transitivity; (E4) is called congruence of relations; and (E5) is called

congruence of functions.

We now discuss models of equality.

2.5.2 Normal Structures

We have a special name for first-order structures that have a notion of equality.

Definition 2.5.2 (Normal LE-Structures). An LE-structure A is normal if A |= ff for all

ff ∈ ΣE.

In other words, an LE-structure is normal if the symbol E is interpreted in it as equality.

sorry

2.5.3 Normal Models

In this subsection, we state and prove important results closed LE-formulae. Throughout, fix a set

∆ of closed LE-formulae.

Definition 2.5.3 (Normal Models). A normal model of ∆ is a normal LE-structure B

such that B |= ff for all ff ∈ ∆.

In other words, a normal model of ∆ is precisely a model of ∆ that is normal in LE.

Recall that ΣE is the set of LE-formulae consisting of the Axioms of Equality (cf. Definition 2.5.1).

We have an equivalent condition for a model to be normal.

Lemma 2.5.4. ∆ has a normal model if and only if ΣE ∪∆ has a model.

Proof. sorry

We have a compactness result for normal structures.

Chapter 2. First-Order Logic Page 66

Theorem 2.5.5 (The Compactness Theorem for Normal Structures). Assume that LE is

countable. If every finite subset of ∆ has a normal model, then ∆ has a normal model.

Proof. By definition, every normal LE-sturcture is a model of ΣE. Assuming that every finite subset

of ∆ admits a normal model, then every finite subset of ∆∪ΣE has a model, because any normal

model of every finite subset of ∆ is both a model of ∆ and a normal LE-structure, and therefore,

model of ΣE. Then, by the standard version of the Compactness Theorem (Theorem 2.4.16),

∆ ∪ ΣE has a model. Then, by Lemma 2.5.4, ∆ has a normal model.

sorry

2.6 Linear Orders

In this section, we discuss results on ordered sets. Throughout, denote by LE a first-order language

with a binary relation symbol = (for ‘equality’) and another binary symbol ≤ (for ‘comparisons’).

We begin by defining what a linear order is.

Definition 2.6.1 (Linear Order). A linear order is a normal LE-structure A = ⟨A;≤A⟩

that models the following LE-formulae:

ffi1 : (∀x1) (∀x2) (((x1 ≤ x2) ∧ (x2 ≤ x1)) ↔ (x1 = x2))

ffi2 : (∀x1) (∀x2) (∀x3) (((x1 ≤ x2) ∧ (x2 ≤ x3)) → (x1 → x3))

ffi3 : (∀x1) (∀x2) ((x1 ≤ x2) ∨ (x2 ≤ x1))

Chapter 3

Set Theory

We now come to the final component of this module: the theory of sets. The purpose of this

chapter is to motivate and discuss the results that have led to the development of the modern

theory of sets.

The structure of this chapter will be as follows. We will begin by discussing naïve set theory and the

motivations for the axiomatisation of set theory by Zermelo and Fraenkel. We will then state and

explain some of the Zermelo-Fraenkel axioms. We will then develop some theory and prove them

using naïve set-theoretic arguments, and mention what breaks down in the axiomatic sense when

we use the axioms developed up to that point. This will motivate the addition of an appropriate

axiom to make the naïve arguments valid in the axiomatic sense, all the while steering clear of the

paradoxes that come with a non-axiomatic treatment of set theory.

3.1 Naïve Set Theory

We begin by discussing the reasons why set theory was axiomatised, as well as a few basic axioms

that will already allow us to do a non-trivial amount of mathematics, following which we will

motivate, state and explore the more nuanced axioms.

3.1.1 Familiar Set-Theoretic Constructions

There are five important notions from naïve set theory with which we are already quite familiar:

Chapter 3. Set Theory Page 68

1. Extensionality

2. The Natural Numbers

3. sorry

4. Ordered Pairs

5. Functions

3.1.2 The Concept of Cardinality

Informally, the cardinality of a set is the number of elements it has. We briefly explore this notion

in more detail in this section.

Definition 3.1.1 (Equinumerosity). We say sets A and B are equinumerous, or that A

and B have the same cardniality, if there is a bijection between A and B.

There are two ways by which we will denote this.

Convention. If A and B are equinumerous, we write

A ≈ B or |A| = |B|

(regardless of the actual cardinalities of A and B).

We also define finiteness and countability.

Definition 3.1.2 (Finiteness). A set A is finite if it is equinumerous with some element of

N.

The idea is that we view any element n ∈ N as a set with b elements. Ie, for all n ∈ N,

n = {0; 1; : : : ; n − 1}

with 0 = ∅, 1 = {∅}, and so on.

Chapter 3. Set Theory Page 69

Admittedly, this is not the soundest thing to do, since we have yet to define things like ∅, ∪, and

N. However, since the purpose of this section is to offer motivation, we do not make anything of

it. We now define countable infiniteness.

Definition 3.1.3 (Countable Infiniteness). A set A is countably infinite if it is equinu-

merous with all of N.

We adopt the following definition for countability.

Definition 3.1.4 (Countability and Uncountability). A set A is countable if it is either

finite or countably infinite; similarly, we say A uncountable if it is neither (ie, not countable).

We have many conditions for countability. We recall some of them.

Proposition 3.1.5. Let A and B be countable sets.

1. Every subset of A (and of B) is countable.

2. A× B is countable.

3. A ∪ B is countable.

4. A ⊔ B is countable.

The above basic facts do not warrant proving in this module.

We even have a somewhat surprising result about countable unions of countable sets.

Proposition 3.1.6. Let A0; A1; A2; : : : all be countable sets. Then, the countable union[
n∈N

An

is countable.

We do not prove this fact either, but we do mention that every proof of it uses the Axiom of

Chocie. add

refer-

ence
Example 3.1.7.

Chapter 3. Set Theory Page 70

3.1.3 The Zermelo-Fraenkel Axioms

In this subsection, we define the Zermelo-Fraenkel Axioms on which most of modern mathe-

matics is built.1

We will begin by mentioning what we mean be a Zerlemo-Fraenkel Axiom. This is not a formal

definition per se, but a convention we adopt for our own convenience.

Convention. The Zermelo-Fraenkel Axioms are first-order formulae in some first-order lan-

guage L that contains

• Variable symbols representing sets

• A binary relation symbol = representing equality

• A binary relation symbol ∈ representing membership

The Zermelo-Fraenkel Axioms are contained in a set of formulae ∆ZF that is modelled by all

modern mathematics that does not use the Axiom of Choice. When we discuss the Axiom

of Choice, we will consider the set ∆ZFC instead, which consists of all elements of ∆ZF as

well as the Axiom of Choice. All structures in modern mathematics are models of ∆ZFC.

We are now ready to begin stating the Zermelo-Fraenkel Axioms.

ZF Axiom 1. sorry

ZF Axiom 2. sorry

ZF Axiom 3. sorry

ZF Axiom 4. sorry

ZF Axiom 5. sorry

ZF Axiom 6. sorry

1I personally prefer the Calculus of Inductive Constructions, but what do I know...

Chapter 3. Set Theory Page 71

sorry

The seventh axiom posits the existence of a notion of infinity. Before we can state it, we need to

define a notion of inductive sets.

Definition 3.1.8 (The Successor). Let a be an arbitrary set. The successor of a is the

set

a† := a ∪ {a}

The construction of the natural numbers, with which we expect the reader to be familiar, involves

applying the successor function repeatedly to the empty set.

We can now define what it means for a set to be inductive. There is an important difference

between the definition below and the notion of inductive types in programming languages like Lean

that are built using the Calculus of Inductive Constructions: here, we have specified a successor

operation that takes in a set and gives out another set, whereas when constructing N in Lean, we

have two constructors: the distinguished number 0 and the function succ : N → N

Definition 3.1.9 (Inductivity). A set A is said to be inductive if

Ind(A) :
(
(∅ ∈ A) ∧ (∀x)

(
(x ∈ A) →

(
x† ∈ A

)))
holds in A.

The idea behind the Axiom of Infinity is that by our informal understanding of infinity, an inductive

set cannot be finite.

ZF Axiom 7 (The Axiom of Infinity). The Axiom of Infinity posits the existence of an

inductive set. Ie, it is the first-order formula

(∃A) (Ind(A))

Exercises

Here, we provide solutions to the exercises discussed in problems classes. We do not include all

exercises, only the ones that are ‘interesting’.

Problems Class 1

Exercise 1.1. Decide whether the following are true or false, giving reasons. Here, Γ is a

set of L-formulae, as are ffi and .

1. In every L-formula, the number of opening parentheses (is equal to the number of

connectives.

2. If Γ ⊢L ffi and Γ ⊢L (ffi→), then Γ ⊢L .

3. Suppose v is a propositional valuation and Γ is such that v(Γ) = F. Then, for all ffi

such that Γ ⊢L ffi, we have v(ffi) = F.

4. Suppose v is a propositional valuation and ∆v = {ffi | v(ffi) = F}. Then, ∆ is consis-

tent.

5. Suppose v is a propositional valuation and ∆v = {ffi | v(ffi) = F}. Then, ∆ is complete.

Solution.

1. TRUE. Every connective in an L-formula is associated with precisely one sub-L-formula that

is not a variable, and the number of pairs of parentheses (which is the number of opening

parentheses) is precisely the number of sub-L-formulae that are not variables, because every

such sub-L-formula is enclosed in parentheses.

2. TRUE. This is simply modus ponens generalised to arbitrary (potentially nonempty) Γ. While

Exercises Page 73

the deduction rule (MP) is technically not something we defined over arbitrary contexts Γ,

we can easily prove that it holds by induction on the length of Γ.

3. FALSE. Let v be any propositional valuation and ffi and axiom of L.

4. FALSE. Let v be any propositional valuation and p a propositional variable. Then, we know

(p → (¬p)) ∈ ∆v. We also know that (p ∧ (¬p)) ∈ ∆v. But the latter is logically equivalent

to the negation of the former, making ∆v inconsistent.2

5. TRUE. Let v be sorry

Exercise 1.2. Suppose ffi is an L-formula and Γ is a set of L-formulae. Do the following

syntactically, ie, without using the Completeness Theorem. You may use theorems of L

we have proved in lectures or the weekly problem sheets.

(i) Express the ‘Law of the Excluded Middle’ (ffi ∨ (¬ffi)) as an L-formula and say why

this is a theorem of L.

(ii) sorry

Solution.

(i) Recall that any formula of the form (a ∨ b) is expressed as ((¬a) → b). Thus, we have that

(ffi ∨ (¬ffi)) is expressible as

((¬ffi) → (¬ffi))

Indeed, we proved in lectures that in L, any formula implies itself. Therefore, the Law of the

Excluded Middle is a theorem of L.

(ii) sorry

Exercise 1.3. Show that the set of connectives {¬;↔} is not adequate.

Hint. See EdStem.

2We have actually done something stronger than simply provide a counterexample: we have proved that the
statement is false for any propositional valuation, not just for some propositional valuation

Exercises Page 74

Solution. The idea is to lok at all possible truth functions of two variables p and q that are obtained

using formulae involving ¬ and ↔. sorry

Problems Class 2

Exercise 2.4. In Example 2.1.23, we introduced a first-order language L that is appropriate

for groups. In this question, we will use the notation defined in Example 2.1.23. Define the

L-structures

A := ⟨Z; =;+;−; 0⟩

B := ⟨Q; =;+;−; 0⟩

1. True or false? Give reasons.

(a) Every L-structure is a group.

(b) (¬m(x2; m(e; x1))) is a term of L.

(c) (¬m(x2; m(e; x1))) is a formula of L.

(d) R(e;m(x1; i(x1))) is a formula of L.

(e) (∃x1) (¬R(e;m(x1; i(x1)))) is a formula of L.

(f) (∃x1) ((¬R(e;m(x1; i(x1))))) is a formula of L.

2. Suppose v is a valuation of L in A such that

v(x1) = 2

v(x2) = 4

v(xj) = 0 for j ̸= 1; 2

(a) Compute

v(m(x2; m(e; x1)))

(b) Find a term t of L such that v(t) = −6.

(c) Is there a term t ′ of L such that v(t ′) = 7?

3. Find a closed L-formula ffi such that A |= ffi but B ̸|= ffi.

Solution.

Exercises Page 75

1. (a) FALSE. The first-order language L is syntactic. There is nothing that tells us that the

unary function symbol for inversion must actually correspond to a function that undoes

the binary function to get the constant. For example,

⟨Z;×;−; 0⟩

is, as per Definition 2.1.19, an L-structure, because it has the same signature as L.

(b) FALSE. As per Definition 2.1.11, a term cannot have a connective. Since the expression

(¬m(x2; m(e; x1)))

has a connective, it cannot be a term.

(c) FALSE. As per Definition 2.1.15, any formula must contain an atomic formula, which

contains a relation symbol. Since the expression

(¬m(x2; m(e; x1)))

has no relation symbols, it cannot be a formula.

(d) TRUE. Both e and m(x1; i(x1)) are terms, as they satisfy Definition 2.1.11. Then, since

R is a relation symbol, we have that the expression

R(e;m(x1; i(x1)))

is, in fact, an atomic formula (cf. Definition 2.1.14). Therefore, by Definition 2.1.15,

it is also a formula.

(e) TRUE. This is easily checked.

(f) FALSE. It looks the same as the previous one, but there are two brackets too many! So,

the formula is not well-formed. (In practice, we only use brackets to disambiguate. In

this module, though, we’ve defined them as an integral part of our syntax. Therefore,

in this module, we have to be careful when dealing with brackets!)

Exercises Page 76

2. (a) In A, the (additive) group of integers, this corresponds to the expression

4 + 2

which we can evaluate to 6.

(b) The following is such a term.

m(i(2) ; m(i(2) ; i(2)))

It corresponds to the expression

(−2) + ((−2) + (−2))

which we can simplify, using the properties of A, to −6.

(c) We cannot, because as per our definition of v, the valuation of any term must be an

even number.

Problems Class 3

Exercise 3.5. Let LE be the usual first-order language for rings, with a binary relation

symbol for equality (=), three binary function symbols for addition (+), subtraction (−) and

multiplication (·), and two constant symbols for the additive and multiplicative identities (0,

1). Let Φ contain the axioms of a field, expressed in LE. So, any field is a normal model of Φ.

Use the compactness theorem for noaml models to prove that for all closed LE-formulae ffi, if

there are infinitely many primes p such that Fp |= ffi, then there is a field F of characteristic

0 such that F |= ffi.

Solution. For all n ∈ N, define the LE-formula

ffn : (∃x1) · · · (∃xn)
(^

1≤i<j≤n

(xi ̸= xj)

)

Exercises Page 77

fin :

Ñ
¬

Ñ
1 + · · ·+ 1︸ ︷︷ ︸

n times

= 0

éé
Let

Σ := {ffi} ∪ Φ ∪
[
n∈N

{ffn; fin}

Then, applying the compactness theorem for normal models, if there is a normal model for every

finite subset of Σ, then there is a normal model for Σ.

Let ∆ be a finite subset of Σ. If ffi =∈ ∆, then Q |= ∆, because Q |= Σ \ {ffi}. So, we can assume

ffi ∈ ∆. Then, let n be the largest natural number such that ffn; fin ∈ ∆. Such an n exists because

∆ is finite. In this case, since there are infinitely many primes p such that Fp |= ffi, pick some p

such that p > n. In this case, we have Fp |= ffi.

Therefore, by the Compactness Theorem for Normal Models (Theorem 2.5.5), there exists a field

F of characteristic 0 such that F |= ffi.

References

These lecture notes are based heavily on the following references:

[1] David Evans and David Kurniadi Angdinata. M3P65: Mathematical Logic. Lecture Notes.

Imperial College London, Autumn 2018.

For the latest version of these notes, visit https://thefundamentaltheor3m.github.io/LogicNotes/

main.pdf. For any suggestions or corrections, please feel free to fork and make a pull request to

my repository.

78

https://thefundamentaltheor3m.github.io/LogicNotes/main.pdf
https://thefundamentaltheor3m.github.io/LogicNotes/main.pdf

	Propositional Logic
	Propositional Formulae
	Propositions and Connectives
	Truth Functions
	Adequacy

	A Formal System for Propositional Logic
	Formal Deduction Systems
	Constructing a Formal System Propositional Logic
	Deductions in L

	Important Properties of L
	Propositional Valuations
	Soundness
	Consistency
	Completeness

	First-Order Logic
	Languages, Structures and Interpretations
	First-Order Structures
	First-Order Languages
	First-Order Structures Revisited

	A Bridge between Propositional and First-Order Logic
	Valuations Satisfying Formulae
	Substitution

	Variables and the Universal Quantifier
	Bound and Free Variables
	An Analogue of Completeness
	Understanding the Universal Quantifier

	A Formal System for First-Order Logic
	The Formal Deduction System KL
	Tools for Deduction
	Soundness
	Consistency
	Model Existence
	Compactness
	Completeness

	First-Order Languages with Equality
	The Axioms of Equality
	Normal Structures
	Normal Models

	Linear Orders

	Set Theory
	Naïve Set Theory
	Familiar Set-Theoretic Constructions
	The Concept of Cardinality
	The Zermelo-Fraenkel Axioms

	Exercises
	Problems Class 1
	Problems Class 2
	Problems Class 3

	References

