Documentation

Mathlib.Analysis.NormedSpace.MultipliableUniformlyOn

Uniform convergence of products of functions #

We gather some results about the uniform convergence of infinite products, in particular those of the form ∏' i, (1 + f i x) for a sequence f of complex valued functions.

theorem TendstoUniformlyOn.comp_cexp {α : Type u_1} {ι : Type u_2} {K : Set α} {f : ια} {p : Filter ι} {g : α} (hf : TendstoUniformlyOn f g p K) (hg : BddAbove ((fun (x : α) => (g x).re) '' K)) :
TendstoUniformlyOn (fun (x : ι) => Complex.exp f x) (Complex.exp g) p K
theorem Summable.hasSumUniformlyOn_log_one_add {α : Type u_1} {ι : Type u_2} {K : Set α} {u : ι} {f : ια} (hu : Summable u) (h : ∀ᶠ (i : ι) in Filter.cofinite, xK, f i x u i) :
HasSumUniformlyOn (fun (i : ι) (x : α) => Complex.log (1 + f i x)) (fun (x : α) => ∑' (i : ι), Complex.log (1 + f i x)) {K}
theorem Summable.tendstoUniformlyOn_tsum_nat_log_one_add {α : Type u_1} {K : Set α} {f : α} {u : } (hu : Summable u) (h : ∀ᶠ (n : ) in Filter.atTop, xK, f n x u n) :
TendstoUniformlyOn (fun (n : ) (x : α) => mFinset.range n, Complex.log (1 + f m x)) (fun (x : α) => ∑' (n : ), Complex.log (1 + f n x)) Filter.atTop K
theorem hasProdUniformlyOn_of_clog {α : Type u_1} {ι : Type u_2} {𝔖 : Set (Set α)} {f : ια} (hf : SummableUniformlyOn (fun (i : ι) (x : α) => Complex.log (f i x)) 𝔖) (hfn : K𝔖, xK, ∀ (i : ι), f i x 0) (hg : K𝔖, BddAbove ((fun (x : α) => (∑' (i : ι), Complex.log (f i x)).re) '' K)) :
HasProdUniformlyOn f (fun (x : α) => ∏' (i : ι), f i x) 𝔖

If x ↦ ∑' i, log (f i x) is uniformly convergent on 𝔖, its sum has bounded-above real part on each set in 𝔖, and the functions f i x have no zeroes, then ∏' i, f i x is uniformly convergent on 𝔖.

Note that the non-vanishing assumption is really needed here: if this assumption is dropped then one obtains a counterexample if ι = α = ℕ and f i x is 0 if i = x and 1 otherwise.

theorem multipliableUniformlyOn_of_clog {α : Type u_1} {ι : Type u_2} {𝔖 : Set (Set α)} {f : ια} (hf : SummableUniformlyOn (fun (i : ι) (x : α) => Complex.log (f i x)) 𝔖) (hfn : K𝔖, xK, ∀ (i : ι), f i x 0) (hg : K𝔖, BddAbove ((fun (x : α) => (∑' (i : ι), Complex.log (f i x)).re) '' K)) :
theorem Summable.hasProdUniformlyOn_one_add {α : Type u_1} {ι : Type u_2} {K : Set α} {u : ι} {R : Type u_3} [NormedCommRing R] [NormOneClass R] [CompleteSpace R] [TopologicalSpace α] {f : ιαR} (hK : IsCompact K) (hu : Summable u) (h : ∀ᶠ (i : ι) in Filter.cofinite, xK, f i x u i) (hcts : ∀ (i : ι), ContinuousOn (f i) K) :
HasProdUniformlyOn (fun (i : ι) (x : α) => 1 + f i x) (fun (x : α) => ∏' (i : ι), (1 + f i x)) {K}

If a sequence of continuous functions f i x on an open compact K have norms eventually bounded by a summable function, then ∏' i, (1 + f i x) is uniformly convergent on K.

theorem Summable.multipliableUniformlyOn_one_add {α : Type u_1} {ι : Type u_2} {K : Set α} {u : ι} {R : Type u_3} [NormedCommRing R] [NormOneClass R] [CompleteSpace R] [TopologicalSpace α] {f : ιαR} (hK : IsCompact K) (hu : Summable u) (h : ∀ᶠ (i : ι) in Filter.cofinite, xK, f i x u i) (hcts : ∀ (i : ι), ContinuousOn (f i) K) :
MultipliableUniformlyOn (fun (i : ι) (x : α) => 1 + f i x) {K}
theorem Summable.hasProdUniformlyOn_nat_one_add {α : Type u_1} {K : Set α} {R : Type u_3} [NormedCommRing R] [NormOneClass R] [CompleteSpace R] [TopologicalSpace α] {f : αR} (hK : IsCompact K) {u : } (hu : Summable u) (h : ∀ᶠ (n : ) in Filter.atTop, xK, f n x u n) (hcts : ∀ (n : ), ContinuousOn (f n) K) :
HasProdUniformlyOn (fun (n : ) (x : α) => 1 + f n x) (fun (x : α) => ∏' (i : ), (1 + f i x)) {K}

This is a version of hasProdUniformlyOn_one_add for sequences indexed by .

theorem Summable.multipliableUniformlyOn_nat_one_add {α : Type u_1} {K : Set α} {R : Type u_3} [NormedCommRing R] [NormOneClass R] [CompleteSpace R] [TopologicalSpace α] {f : αR} (hK : IsCompact K) {u : } (hu : Summable u) (h : ∀ᶠ (n : ) in Filter.atTop, xK, f n x u n) (hcts : ∀ (n : ), ContinuousOn (f n) K) :
MultipliableUniformlyOn (fun (n : ) (x : α) => 1 + f n x) {K}
theorem Summable.hasProdLocallyUniformlyOn_one_add {α : Type u_1} {ι : Type u_2} {K : Set α} {u : ι} {R : Type u_3} [NormedCommRing R] [NormOneClass R] [CompleteSpace R] [TopologicalSpace α] {f : ιαR} [LocallyCompactSpace α] (hK : IsOpen K) (hu : Summable u) (h : ∀ᶠ (i : ι) in Filter.cofinite, xK, f i x u i) (hcts : ∀ (i : ι), ContinuousOn (f i) K) :
HasProdLocallyUniformlyOn (fun (i : ι) (x : α) => 1 + f i x) (fun (x : α) => ∏' (i : ι), (1 + f i x)) K

If a sequence of continuous functions f i x on an open subset K have norms eventually bounded by a summable function, then ∏' i, (1 + f i x) is locally uniformly convergent on K.

theorem Summable.multipliableLocallyUniformlyOn_one_add {α : Type u_1} {ι : Type u_2} {K : Set α} {u : ι} {R : Type u_3} [NormedCommRing R] [NormOneClass R] [CompleteSpace R] [TopologicalSpace α] {f : ιαR} [LocallyCompactSpace α] (hK : IsOpen K) (hu : Summable u) (h : ∀ᶠ (i : ι) in Filter.cofinite, xK, f i x u i) (hcts : ∀ (i : ι), ContinuousOn (f i) K) :
MultipliableLocallyUniformlyOn (fun (i : ι) (x : α) => 1 + f i x) K
theorem Summable.hasProdLocallyUniformlyOn_nat_one_add {α : Type u_1} {K : Set α} {R : Type u_3} [NormedCommRing R] [NormOneClass R] [CompleteSpace R] [TopologicalSpace α] [LocallyCompactSpace α] {f : αR} (hK : IsOpen K) {u : } (hu : Summable u) (h : ∀ᶠ (n : ) in Filter.atTop, xK, f n x u n) (hcts : ∀ (n : ), ContinuousOn (f n) K) :
HasProdLocallyUniformlyOn (fun (n : ) (x : α) => 1 + f n x) (fun (x : α) => ∏' (i : ), (1 + f i x)) K

This is a version of hasProdLocallyUniformlyOn_one_add for sequences indexed by .

theorem Summable.multipliableLocallyUniformlyOn_nat_one_add {α : Type u_1} {K : Set α} {R : Type u_3} [NormedCommRing R] [NormOneClass R] [CompleteSpace R] [TopologicalSpace α] [LocallyCompactSpace α] {f : αR} (hK : IsOpen K) {u : } (hu : Summable u) (h : ∀ᶠ (n : ) in Filter.atTop, xK, f n x u n) (hcts : ∀ (n : ), ContinuousOn (f n) K) :
MultipliableLocallyUniformlyOn (fun (n : ) (x : α) => 1 + f n x) K