theorem
Filter.eventually_atImInfty
{p : UpperHalfPlane → Prop}
:
(∀ᶠ (x : UpperHalfPlane) in UpperHalfPlane.atImInfty, p x) ↔ ∃ (A : ℝ), ∀ (z : UpperHalfPlane), A ≤ z.im → p z
theorem
Filter.tendsto_im_atImInfty :
Tendsto (fun (x : UpperHalfPlane) => x.im) UpperHalfPlane.atImInfty atTop