theorem
InnerProductSpace.natCast_smul_left
{𝕜 : Type u_1}
[RCLike 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[InnerProductSpace 𝕜 E]
{u v : E}
{a : ℕ}
:
theorem
InnerProductSpace.intCast_smul_left
{𝕜 : Type u_1}
[RCLike 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[InnerProductSpace 𝕜 E]
{u v : E}
{a : ℤ}
:
theorem
InnerProductSpace.natCast_smul_right
{𝕜 : Type u_1}
[RCLike 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[InnerProductSpace 𝕜 E]
{u v : E}
{a : ℕ}
:
theorem
InnerProductSpace.intCast_smul_right
{𝕜 : Type u_1}
[RCLike 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[InnerProductSpace 𝕜 E]
{u v : E}
{a : ℤ}
: