ℤ-Linear Equivalences of Lattices with ℤ^n. #
In this file, we prove that there is a ℤ-linear equivalence of any lattice in Euclidean Space with
the standard lattice ℤ^n (as defined in SpherePacking.ForMathlib.PoissonSummation.Zn_Pi).
noncomputable def
ZLattice.equiv_Zn
{n : ℕ}
(Λ : Submodule ℤ (Fin n → ℝ))
[DiscreteTopology ↥Λ]
[IsZLattice ℝ Λ]
:
Any lattice in Euclidean space is ℤ-linearly equivalent to ↑ℤ^n.
Equations
- ZLattice.equiv_Zn Λ = LinearEquiv.ofFinrankEq ↥Λ ↥(ℤ^n) ⋯
Instances For
noncomputable def
ZLattice.Zn_equiv
{n : ℕ}
(Λ : Submodule ℤ (Fin n → ℝ))
[DiscreteTopology ↥Λ]
[IsZLattice ℝ Λ]
:
For any ZLattice Λ in ℝ^n, the LinearEquiv from ℤ^n to Λ.