Documentation

SpherePacking.ForMathlib.PoissonSummation.Lattice_Equiv

ℤ-Linear Equivalences of Lattices with ℤ^n. #

In this file, we prove that there is a ℤ-linear equivalence of any lattice in Euclidean Space with the standard lattice ℤ^n (as defined in SpherePacking.ForMathlib.PoissonSummation.Zn_Pi).

noncomputable def ZLattice.equiv_Zn {n : } (Λ : Submodule (Fin n)) [DiscreteTopology Λ] [IsZLattice Λ] :
Λ ≃ₗ[] ↥(ℤ^n)

Any lattice in Euclidean space is -linearly equivalent to ↑ℤ^n.

Equations
Instances For
    noncomputable def ZLattice.Zn_equiv {n : } (Λ : Submodule (Fin n)) [DiscreteTopology Λ] [IsZLattice Λ] :
    ↥(ℤ^n) ≃ₗ[] Λ

    For any ZLattice Λ in ℝ^n, the LinearEquiv from ℤ^n to Λ.

    Equations
    Instances For