theorem
EuclideanSpace.volume_ball_pos
{r : ℝ}
{ι : Type u_1}
[Fintype ι]
[Nonempty ι]
(x : EuclideanSpace ℝ ι)
(hr : 0 < r)
:
Equations
- Fintype.ofSingletonOnly α = if h : Nonempty α then Fintype.ofSubsingleton (Classical.choice h) else Fintype.ofIsEmpty
Instances For
theorem
MeasureTheory.MeasureSpace.volume_subsingleton
{α : Type u_2}
[MeasureSpace α]
{s : Set α}
(hs : Subsingleton ↑s)
[NoAtoms volume]
:
theorem
EuclideanSpace.ball_subsingleton
{r : ℝ}
{ι : Type u_1}
[Fintype ι]
[IsEmpty ι]
(x : EuclideanSpace ℝ ι)
:
Subsingleton ↑(Metric.ball x r)
theorem
EuclideanSpace.volume_ball_lt_top
{r : ℝ}
{ι : Type u_1}
[Fintype ι]
[inst : MeasureTheory.NoAtoms MeasureTheory.volume]
(x : EuclideanSpace ℝ ι)
: