Smoothness #
In this file, we prove that the integrands of all of the REAL integrals making up a are smooth. That is, we translate the complex holomorphicity results into smoothness results by showing first that the parametrisations are smooth and then composing them with the holomorphicity proofs to conclude that the composition of the complex integrands with the parametrisations are smooth real functions.
theorem
MagicFunction.a.RealIntegrands.Φ₁_contDiffOn
{r : ℝ}
:
ContDiffOn ℝ (↑⊤) (Φ₁ r) (Set.Ioc 0 1)
theorem
MagicFunction.a.RealIntegrands.Φ₂_contDiffOn
{r : ℝ}
:
ContDiffOn ℝ (↑⊤) (Φ₂ r) (Set.Icc 0 1)
theorem
MagicFunction.a.RealIntegrands.Φ₃_contDiffOn
{r : ℝ}
:
ContDiffOn ℝ (↑⊤) (Φ₃ r) (Set.Ioc 0 1)
theorem
MagicFunction.a.RealIntegrands.Φ₄_contDiffOn
{r : ℝ}
:
ContDiffOn ℝ (↑⊤) (Φ₄ r) (Set.Icc 0 1)
theorem
MagicFunction.a.RealIntegrands.Φ₅_contDiffOn
{r : ℝ}
:
ContDiffOn ℝ (↑⊤) (Φ₅ r) (Set.Ioc 0 1)