Documentation
SpherePacking
.
ModularForms
.
BigO
Search
return to top
source
Imports
Init
Mathlib.Analysis.CStarAlgebra.Classes
Mathlib.Data.Int.Star
Mathlib.Algebra.Order.Ring.Star
Mathlib.NumberTheory.ModularForms.EisensteinSeries.UniformConvergence
Imported by
norm_symm
linear_bigO
linear_bigO_pow
Asymptotics
.
IsBigO
.
zify
Asymptotics
.
IsBigO
.
of_neg
linear_bigO_nat
linear_bigO'
source
theorem
norm_symm
(
x
y
:
ℤ
)
:
‖
![
x
,
y
]
‖
=
‖
![
y
,
x
]
‖
source
theorem
linear_bigO
(
m
:
ℤ
)
(
z
:
UpperHalfPlane
)
:
(fun (
n
:
ℤ
) => (
↑
m
*
↑
z
+
↑
n
)
⁻¹
)
=O[
Filter.cofinite
]
fun (
n
:
ℤ
) =>
|
↑
n
|
⁻¹
source
theorem
linear_bigO_pow
(
m
:
ℤ
)
(
z
:
UpperHalfPlane
)
(
k
:
ℕ
)
:
(fun (
n
:
ℤ
) => ((
↑
m
*
↑
z
+
↑
n
)
^
k
)
⁻¹
)
=O[
Filter.cofinite
]
fun (
n
:
ℤ
) => (
|
↑
n
|
^
k
)
⁻¹
source
theorem
Asymptotics
.
IsBigO
.
zify
{
α
:
Type
u_1}
{
β
:
Type
u_2}
[
Norm
α
]
[
Norm
β
]
{
f
:
ℤ
→
α
}
{
g
:
ℤ
→
β
}
(
hf
:
f
=O[
Filter.cofinite
]
g
)
:
(fun (
n
:
ℕ
) =>
f
↑
n
)
=O[
Filter.cofinite
]
fun (
n
:
ℕ
) =>
g
↑
n
source
theorem
Asymptotics
.
IsBigO
.
of_neg
{
α
:
Type
u_1}
{
β
:
Type
u_2}
[
Norm
α
]
[
Norm
β
]
{
f
:
ℤ
→
α
}
{
g
:
ℤ
→
β
}
(
hf
:
f
=O[
Filter.cofinite
]
g
)
:
(fun (
n
:
ℤ
) =>
f
(
-
n
)
)
=O[
Filter.cofinite
]
fun (
n
:
ℤ
) =>
g
(
-
n
)
source
theorem
linear_bigO_nat
(
m
:
ℤ
)
(
z
:
UpperHalfPlane
)
:
(fun (
n
:
ℕ
) => (
↑
m
*
↑
z
+
↑
n
)
⁻¹
)
=O[
Filter.cofinite
]
fun (
n
:
ℕ
) =>
|
↑
n
|
⁻¹
source
theorem
linear_bigO'
(
m
:
ℤ
)
(
z
:
UpperHalfPlane
)
:
(fun (
n
:
ℤ
) => (
↑
n
*
↑
z
+
↑
m
)
⁻¹
)
=O[
Filter.cofinite
]
fun (
n
:
ℤ
) =>
|
↑
n
|
⁻¹