Documentation

SpherePacking.ModularForms.BigO

theorem norm_symm (x y : ) :
theorem linear_bigO (m : ) (z : UpperHalfPlane) :
(fun (n : ) => (m * z + n)⁻¹) =O[Filter.cofinite] fun (n : ) => |n|⁻¹
theorem linear_bigO_pow (m : ) (z : UpperHalfPlane) (k : ) :
(fun (n : ) => ((m * z + n) ^ k)⁻¹) =O[Filter.cofinite] fun (n : ) => (|n| ^ k)⁻¹
theorem Asymptotics.IsBigO.zify {α : Type u_1} {β : Type u_2} [Norm α] [Norm β] {f : α} {g : β} (hf : f =O[Filter.cofinite] g) :
(fun (n : ) => f n) =O[Filter.cofinite] fun (n : ) => g n
theorem Asymptotics.IsBigO.of_neg {α : Type u_1} {β : Type u_2} [Norm α] [Norm β] {f : α} {g : β} (hf : f =O[Filter.cofinite] g) :
(fun (n : ) => f (-n)) =O[Filter.cofinite] fun (n : ) => g (-n)
theorem linear_bigO_nat (m : ) (z : UpperHalfPlane) :
(fun (n : ) => (m * z + n)⁻¹) =O[Filter.cofinite] fun (n : ) => |n|⁻¹
theorem linear_bigO' (m : ) (z : UpperHalfPlane) :
(fun (n : ) => (n * z + m)⁻¹) =O[Filter.cofinite] fun (n : ) => |n|⁻¹