Documentation
SpherePacking
.
ModularForms
.
Icc_Ico_lems
Search
return to top
source
Imports
Init
Mathlib.Analysis.CStarAlgebra.Classes
Mathlib.Data.Int.Star
Mathlib.Algebra.Order.Group.Int
Imported by
Icc_succ
trex
Icc_sum_even
verga2
int_add_abs_self_nonneg
verga
fsb
source
theorem
Icc_succ
(
n
:
ℕ
)
:
Finset.Icc
(
-
(
↑
n
+
1
)) (
↑
n
+
1
)
=
Finset.Icc
(
-
↑
n
)
↑
n
∪
{
-
(
↑
n
+
1
)
,
↑
n
+
1
}
source
theorem
trex
(
f
:
ℤ
→
ℂ
)
(
N
:
ℕ
)
(
hn
:
1
≤
N
)
:
∑
m
∈
Finset.Icc
(
-
↑
N
)
↑
N
,
f
m
=
f
↑
N
+
f
(
-
↑
N
)
+
∑
m
∈
Finset.Icc
(
-
(
↑
N
-
1
)) (
↑
N
-
1
)
,
f
m
source
theorem
Icc_sum_even
(
f
:
ℤ
→
ℂ
)
(
hf
:
∀ (
n
:
ℤ
),
f
n
=
f
(
-
n
)
)
(
N
:
ℕ
)
:
∑
m
∈
Finset.Icc
(
-
↑
N
)
↑
N
,
f
m
=
2
*
∑
m
∈
Finset.range
(
N
+
1
)
,
f
↑
m
-
f
0
source
theorem
verga2
:
Filter.Tendsto
(fun (
N
:
ℕ
) =>
Finset.Icc
(
-
↑
N
)
↑
N
)
Filter.atTop
Filter.atTop
source
theorem
int_add_abs_self_nonneg
(
n
:
ℤ
)
:
0
≤
n
+
|
n
|
source
theorem
verga
:
Filter.Tendsto
(fun (
N
:
ℕ
) =>
Finset.Ico
(
-
↑
N
)
↑
N
)
Filter.atTop
Filter.atTop
source
theorem
fsb
(
b
:
ℕ
)
:
Finset.Ico
(
-
(
↑
b
+
1
)) (
↑
b
+
1
)
=
Finset.Ico
(
-
↑
b
)
↑
b
∪
{
-
(
↑
b
+
1
)
,
↑
b
}