Documentation

SpherePacking.ModularForms.clog_arg_lems

theorem arg_pow_aux (n : ) (x : ) (hx : x 0) (hna : |x.arg| < Real.pi / n) :
(x ^ n).arg = n * x.arg
theorem one_add_abs_half_ne_zero {x : } (hb : x < 1 / 2) :
1 + x 0
theorem arg_pow (n : ) (f : ) (hf : Filter.Tendsto f Filter.atTop (nhds 0)) :
∀ᶠ (m : ) in Filter.atTop, ((1 + f m) ^ n).arg = n * (1 + f m).arg
theorem clog_pow (n : ) (f : ) (hf : Filter.Tendsto f Filter.atTop (nhds 0)) :
∀ᶠ (m : ) in Filter.atTop, Complex.log ((1 + f m) ^ n) = n * Complex.log (1 + f m)
theorem log_summable_pow (f : ) (hf : Summable f) (m : ) :
Summable fun (n : ) => Complex.log ((1 + f n) ^ m)