theorem
arg_pow2
(n : ℕ)
(f : UpperHalfPlane → ℂ)
(hf : Filter.Tendsto f UpperHalfPlane.atImInfty (nhds 0))
:
theorem
clog_pow
(n : ℕ)
(f : ℕ → ℂ)
(hf : Filter.Tendsto f Filter.atTop (nhds 0))
:
∀ᶠ (m : ℕ) in Filter.atTop, Complex.log ((1 + f m) ^ n) = ↑n * Complex.log (1 + f m)
theorem
clog_pow2
(n : ℕ)
(f : UpperHalfPlane → ℂ)
(hf : Filter.Tendsto f UpperHalfPlane.atImInfty (nhds 0))
:
∀ᶠ (m : UpperHalfPlane) in UpperHalfPlane.atImInfty, Complex.log ((1 + f m) ^ n) = ↑n * Complex.log (1 + f m)