Cotangent #
This file contains lemmas about the cotangent function, including useful series expansions.
theorem
tendsto_euler_sin_prod'
(x : ℂ)
(h0 : x ≠ 0)
:
Filter.Tendsto (fun (n : ℕ) => ∏ i ∈ Finset.range n, sinTerm x i) Filter.atTop
(nhds (Complex.sin (↑Real.pi * x) / (↑Real.pi * x)))
theorem
tendstoUniformlyOn_compact_euler_sin_prod
(Z : Set ↑Complex.integerComplement)
(hZ : IsCompact Z)
:
TendstoUniformlyOn (fun (n : ℕ) (z : ↑Complex.integerComplement) => ∏ j ∈ Finset.range n, sinTerm (↑z) j)
(fun (x : ↑Complex.integerComplement) => Complex.sin (↑Real.pi * ↑x) / (↑Real.pi * ↑x)) Filter.atTop Z
theorem
tendsto_logDeriv_euler_sin_div
(x : ℂ)
(hx : x ∈ Complex.integerComplement)
:
Filter.Tendsto (fun (n : ℕ) => logDeriv (fun (z : ℂ) => ∏ j ∈ Finset.range n, sinTerm z j) x) Filter.atTop
(nhds (logDeriv (fun (t : ℂ) => Complex.sin (↑Real.pi * t) / (↑Real.pi * t)) x))
theorem
tendsto_logDeriv_euler_cot_sub
(x : ℂ)
(hx : x ∈ Complex.integerComplement)
:
Filter.Tendsto (fun (n : ℕ) => ∑ j ∈ Finset.range n, cotTerm x j) Filter.atTop
(nhds (↑Real.pi * (↑Real.pi * x).cot - 1 / x))