Documentation

SpherePacking.ModularForms.cotangent

Cotangent #

This file contains lemmas about the cotangent function, including useful series expansions.

theorem Complex.cot_eq_exp_ratio (z : ) :
z.cot = (exp (2 * I * z) + 1) / (I * (1 - exp (2 * I * z)))
theorem Complex.cot_pi_eq_exp_ratio (z : ) :
(Real.pi * z).cot = (exp (2 * Real.pi * I * z) + 1) / (I * (1 - exp (2 * Real.pi * I * z)))
noncomputable def sinTerm (x : ) (n : ) :

The term in the infinite product for sine.

Equations
Instances For
    theorem tendsto_euler_sin_prod' (x : ) (h0 : x 0) :
    Filter.Tendsto (fun (n : ) => iFinset.range n, sinTerm x i) Filter.atTop (nhds (Complex.sin (Real.pi * x) / (Real.pi * x)))
    theorem multipliable_sinTerm (x : ) :
    Multipliable fun (i : ) => sinTerm x i
    theorem tendsto_logDeriv_euler_sin_div (x : ) (hx : x Complex.integerComplement) :
    Filter.Tendsto (fun (n : ) => logDeriv (fun (z : ) => jFinset.range n, sinTerm z j) x) Filter.atTop (nhds (logDeriv (fun (t : ) => Complex.sin (Real.pi * t) / (Real.pi * t)) x))
    theorem logDeriv_sin_div (z : ) (hz : z Complex.integerComplement) :
    logDeriv (fun (t : ) => Complex.sin (Real.pi * t) / (Real.pi * t)) z = Real.pi * (Real.pi * z).cot - 1 / z
    noncomputable def cotTerm (x : ) (n : ) :

    The term in the infinite series expansion of cot.

    Equations
    Instances For
      theorem logDeriv_sinTerm_eq_cotTerm (x : ) (hx : x Complex.integerComplement) (i : ) :
      logDeriv (fun (z : ) => sinTerm z i) x = cotTerm x i
      theorem logDeriv_of_prod {x : } (hx : x Complex.integerComplement) (n : ) :
      logDeriv (fun (z : ) => jFinset.range n, sinTerm z j) x = jFinset.range n, cotTerm x j
      theorem cotTerm_identity (z : ) (hz : z Complex.integerComplement) (n : ) :
      cotTerm z n = 2 * z * (1 / (z ^ 2 - (n + 1) ^ 2))
      theorem cot_series_rep' {z : } (hz : z Complex.integerComplement) :
      Real.pi * (Real.pi * z).cot - 1 / z = ∑' (n : ), (1 / (z - (n + 1)) + 1 / (z + (n + 1)))
      theorem cot_series_rep {z : } (hz : z Complex.integerComplement) :
      Real.pi * (Real.pi * z).cot = 1 / z + ∑' (n : ℕ+), (1 / (z - n) + 1 / (z + n))