Documentation
SpherePacking
.
ModularForms
.
csqrt
Search
return to top
source
Imports
Init
Mathlib.NumberTheory.ArithmeticFunction
Mathlib.Analysis.CStarAlgebra.Classes
Mathlib.NumberTheory.ModularForms.Basic
Mathlib.Analysis.Complex.UpperHalfPlane.Basic
Mathlib.Analysis.SpecialFunctions.Complex.LogDeriv
Mathlib.NumberTheory.ModularForms.EisensteinSeries.Defs
Imported by
csqrt
csqrt_deriv
csqrt_differentiableAt
csqrt_I
csqrt_pow_24
source
noncomputable def
csqrt
:
ℂ
→
ℂ
Equations
csqrt
a
=
Complex.exp
(
1
/
2
*
Complex.log
a
)
Instances For
source
theorem
csqrt_deriv
(
z
:
UpperHalfPlane
)
:
deriv
(fun (
a
:
ℂ
) =>
Complex.exp
(
1
/
2
*
Complex.log
a
)
)
↑
z
=
2
⁻¹
•
(fun (
a
:
ℂ
) =>
Complex.exp
(
-
(
1
/
2
)
*
Complex.log
a
)
)
↑
z
source
theorem
csqrt_differentiableAt
(
z
:
UpperHalfPlane
)
:
DifferentiableAt
ℂ
csqrt
↑
z
source
theorem
csqrt_I
:
csqrt
Complex.I
^
24
=
1
source
theorem
csqrt_pow_24
(
z
:
ℂ
)
(
hz
:
z
≠
0
)
:
csqrt
z
^
24
=
z
^
12