Documentation
SpherePacking
.
ModularForms
.
equivs
Search
return to top
source
Imports
Init
Mathlib.Tactic
Mathlib.Data.Int.Star
Mathlib.Algebra.Order.Ring.Star
Mathlib.Analysis.Normed.Ring.Lemmas
Imported by
negEquiv
succEquiv
swap
swap_apply
swap_involutive
swap_equiv
mapdiv
sigmaAntidiagonalEquivProd
source
def
negEquiv
:
ℤ
≃
ℤ
Equations
negEquiv
=
{
toFun
:=
fun (
n
:
ℤ
) =>
-
n
,
invFun
:=
fun (
n
:
ℤ
) =>
-
n
,
left_inv
:=
negEquiv._proof_1
,
right_inv
:=
negEquiv._proof_1
}
Instances For
source
def
succEquiv
:
ℤ
≃
ℤ
Equations
succEquiv
=
{
toFun
:=
fun (
n
:
ℤ
) =>
n
.
succ
,
invFun
:=
fun (
n
:
ℤ
) =>
n
.
pred
,
left_inv
:=
Int.pred_succ
,
right_inv
:=
Int.succ_pred
}
Instances For
source
def
swap
{
α
:
Type
u_1}
:
(
Fin
2
→
α
)
→
Fin
2
→
α
Equations
swap
x
=
![
x
1
,
x
0
]
Instances For
source
@[simp]
theorem
swap_apply
{
α
:
Type
u_1}
(
b
:
Fin
2
→
α
)
:
swap
b
=
![
b
1
,
b
0
]
source
theorem
swap_involutive
{
α
:
Type
u_1}
(
b
:
Fin
2
→
α
)
:
swap
(
swap
b
)
=
b
source
def
swap_equiv
{
α
:
Type
u_1}
:
(
Fin
2
→
α
)
≃
(
Fin
2
→
α
)
Equations
swap_equiv
=
{
toFun
:=
swap
,
invFun
:=
swap
,
left_inv
:=
⋯
,
right_inv
:=
⋯
}
Instances For
source
def
mapdiv
(
n
:
ℕ+
)
:
{
x
:
ℕ
×
ℕ
//
x
∈
(↑
n
)
.
divisorsAntidiagonal
}
→
ℕ+
×
ℕ+
Equations
mapdiv
n
x
=
(
⟨
(↑
x
)
.1
,
⋯
⟩
,
⟨
↑
⟨
(↑
x
)
.2
,
⋯
⟩
,
⋯
⟩
)
Instances For
source
def
sigmaAntidiagonalEquivProd
:
(
n
:
ℕ+
) ×
{
x
:
ℕ
×
ℕ
//
x
∈
(↑
n
)
.
divisorsAntidiagonal
}
≃
ℕ+
×
ℕ+
Equations
One or more equations did not get rendered due to their size.
Instances For