Documentation

SpherePacking.ModularForms.iteratedderivs

theorem upper_ne_int (x : UpperHalfPlane) (d : ) :
x + d 0
theorem aut_iter_deriv (d : ) (k : ) :
Set.EqOn (iteratedDerivWithin k (fun (z : ) => 1 / (z + d)) {z : | 0 < z.im}) (fun (t : ) => (-1) ^ k * k.factorial * (1 / (t + d) ^ (k + 1))) {z : | 0 < z.im}
theorem aut_iter_deriv' (d : ) (k : ) :
Set.EqOn (iteratedDerivWithin k (fun (z : ) => 1 / (z - d)) {z : | 0 < z.im}) (fun (t : ) => (-1) ^ k * k.factorial * (1 / (t - d) ^ (k + 1))) {z : | 0 < z.im}
theorem aut_contDiffOn (d : ) (k : ) :
ContDiffOn (↑k) (fun (z : ) => 1 / (z - d)) {z : | 0 < z.im}
theorem iter_div_aut_add (d : ) (k : ) :
Set.EqOn (iteratedDerivWithin k (fun (z : ) => 1 / (z - d) + 1 / (z + d)) {z : | 0 < z.im}) ((fun (t : ) => (-1) ^ k * k.factorial * (1 / (t - d) ^ (k + 1))) + fun (t : ) => (-1) ^ k * k.factorial * (1 / (t + d) ^ (k + 1))) {z : | 0 < z.im}
theorem exp_iter_deriv_within (n m : ) :
Set.EqOn (iteratedDerivWithin n (fun (s : ) => Complex.exp (2 * Real.pi * Complex.I * m * s)) {z : | 0 < z.im}) (fun (t : ) => (2 * Real.pi * Complex.I * m) ^ n * Complex.exp (2 * Real.pi * Complex.I * m * t)) {z : | 0 < z.im}