Documentation
SpherePacking
.
ModularForms
.
iteratedderivs
Search
return to top
source
Imports
Init
Mathlib.Analysis.CStarAlgebra.Classes
Mathlib.Analysis.SpecialFunctions.ExpDeriv
Mathlib.Analysis.Calculus.Deriv.Inv
Mathlib.Analysis.Calculus.Deriv.Pow
Mathlib.Analysis.Complex.UpperHalfPlane.Basic
Mathlib.Analysis.Normed.Order.Lattice
Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
Imported by
upper_ne_int
aut_iter_deriv
aut_iter_deriv'
aut_contDiffOn
iter_div_aut_add
exp_iter_deriv_within
source
theorem
upper_ne_int
(
x
:
UpperHalfPlane
)
(
d
:
ℤ
)
:
↑
x
+
↑
d
≠
0
source
theorem
aut_iter_deriv
(
d
:
ℤ
)
(
k
:
ℕ
)
:
Set.EqOn
(
iteratedDerivWithin
k
(fun (
z
:
ℂ
) =>
1
/
(
z
+
↑
d
))
{
z
:
ℂ
|
0
<
z
.
im
}
)
(fun (
t
:
ℂ
) =>
(-
1
)
^
k
*
↑
k
.
factorial
*
(
1
/
(
t
+
↑
d
)
^
(
k
+
1
)))
{
z
:
ℂ
|
0
<
z
.
im
}
source
theorem
aut_iter_deriv'
(
d
:
ℤ
)
(
k
:
ℕ
)
:
Set.EqOn
(
iteratedDerivWithin
k
(fun (
z
:
ℂ
) =>
1
/
(
z
-
↑
d
))
{
z
:
ℂ
|
0
<
z
.
im
}
)
(fun (
t
:
ℂ
) =>
(-
1
)
^
k
*
↑
k
.
factorial
*
(
1
/
(
t
-
↑
d
)
^
(
k
+
1
)))
{
z
:
ℂ
|
0
<
z
.
im
}
source
theorem
aut_contDiffOn
(
d
:
ℤ
)
(
k
:
ℕ
)
:
ContDiffOn
ℂ
(↑
k
)
(fun (
z
:
ℂ
) =>
1
/
(
z
-
↑
d
))
{
z
:
ℂ
|
0
<
z
.
im
}
source
theorem
iter_div_aut_add
(
d
:
ℤ
)
(
k
:
ℕ
)
:
Set.EqOn
(
iteratedDerivWithin
k
(fun (
z
:
ℂ
) =>
1
/
(
z
-
↑
d
)
+
1
/
(
z
+
↑
d
))
{
z
:
ℂ
|
0
<
z
.
im
}
)
(
(fun (
t
:
ℂ
) =>
(-
1
)
^
k
*
↑
k
.
factorial
*
(
1
/
(
t
-
↑
d
)
^
(
k
+
1
)))
+
fun (
t
:
ℂ
) =>
(-
1
)
^
k
*
↑
k
.
factorial
*
(
1
/
(
t
+
↑
d
)
^
(
k
+
1
))
)
{
z
:
ℂ
|
0
<
z
.
im
}
source
theorem
exp_iter_deriv_within
(
n
m
:
ℕ
)
:
Set.EqOn
(
iteratedDerivWithin
n
(fun (
s
:
ℂ
) =>
Complex.exp
(
2
*
↑
Real.pi
*
Complex.I
*
↑
m
*
s
)
)
{
z
:
ℂ
|
0
<
z
.
im
}
)
(fun (
t
:
ℂ
) => (
2
*
↑
Real.pi
*
Complex.I
*
↑
m
)
^
n
*
Complex.exp
(
2
*
↑
Real.pi
*
Complex.I
*
↑
m
*
t
)
)
{
z
:
ℂ
|
0
<
z
.
im
}