theorem
logDeriv_tprod_eq_tsum
{s : Set ℂ}
(hs : IsOpen s)
(x : ↑s)
(f : ℕ → ℂ → ℂ)
(hf : ∀ (i : ℕ), f i ↑x ≠ 0)
(hd : ∀ (i : ℕ), DifferentiableOn ℂ (f i) s)
(hm : Summable fun (i : ℕ) => logDeriv (f i) ↑x)
(htend :
TendstoLocallyUniformlyOn (fun (n : ℕ) => ∏ i ∈ Finset.range n, f i) (fun (x : ℂ) => ∏' (i : ℕ), f i x) Filter.atTop
s)
(hnez : ∏' (i : ℕ), f i ↑x ≠ 0)
:
theorem
logDeriv_one_sub_exp
(r : ℂ)
:
(logDeriv fun (z : ℂ) => 1 - r * Complex.exp z) = fun (z : ℂ) => -r * Complex.exp z / (1 - r * Complex.exp z)