Documentation

SpherePacking.ModularForms.logDeriv_lems

theorem logDeriv_tprod_eq_tsum {s : Set } (hs : IsOpen s) (x : s) (f : ) (hf : ∀ (i : ), f i x 0) (hd : ∀ (i : ), DifferentiableOn (f i) s) (hm : Summable fun (i : ) => logDeriv (f i) x) (htend : TendstoLocallyUniformlyOn (fun (n : ) => iFinset.range n, f i) (fun (x : ) => ∏' (i : ), f i x) Filter.atTop s) (hnez : ∏' (i : ), f i x 0) :
logDeriv (fun (x : ) => ∏' (i : ), f i x) x = ∑' (i : ), logDeriv (f i) x
theorem logDeriv_one_sub_exp (r : ) :
(logDeriv fun (z : ) => 1 - r * Complex.exp z) = fun (z : ) => -r * Complex.exp z / (1 - r * Complex.exp z)
theorem logDeriv_one_sub_exp_comp (r : ) (g : ) (hg : Differentiable g) :
logDeriv ((fun (z : ) => 1 - r * Complex.exp z) g) = fun (z : ) => -r * deriv g z * Complex.exp (g z) / (1 - r * Complex.exp (g z))
theorem logDeriv_q_expo_summable (r : ) (hr : r < 1) :
Summable fun (n : ) => n * r ^ n / (1 - r ^ n)
theorem func_div (a b c d : ) (x : ) (hb : b x 0) (hd : d x 0) :
(a / b) x = (c / d) x (a * d) x = (b * c) x
theorem deriv_EqOn_congr {f g : } (s : Set ) (hfg : Set.EqOn f g s) (hs : IsOpen s) :
Set.EqOn (deriv f) (deriv g) s
theorem logDeriv_eqOn_iff (f g : ) (s : Set ) (hf : DifferentiableOn f s) (hg : DifferentiableOn g s) (hs : s.Nonempty) (hs2 : IsOpen s) (hsc : Convex s) (hgn : xs, g x 0) (hfn : xs, f x 0) :
Set.EqOn (logDeriv f) (logDeriv g) s ∃ (z : ), z 0 Set.EqOn f (z g) s