Documentation

SpherePacking.ModularForms.qExpansion_lems

theorem derivWithin_mul2 (f g : ) (s : Set ) (hf : DifferentiableOn f s) (hd : DifferentiableOn g s) :
s.restrict (derivWithin (fun (y : ) => f y * g y) s) = s.restrict (derivWithin f s * g + f * derivWithin g s)
theorem iteratedDerivWithin_mul (f g : ) (s : Set ) (hs : IsOpen s) (x : ) (hx : x s) (m : ) (hf : ContDiffOn f s) (hg : ContDiffOn g s) :
iteratedDerivWithin m (f * g) s x = iFinset.range m.succ, (m.choose i) * iteratedDerivWithin i f s x * iteratedDerivWithin (m - i) g s x
theorem iteratedDeriv_eq_iteratedDerivWithin (n : ) (f : ) (s : Set ) (hs : IsOpen s) (z : ) (hz : z s) :
theorem iteratedDerivWithin_eq_iteratedDeriv {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace 𝕜 F] {n : } (f : 𝕜F) (s : Set 𝕜) (x : 𝕜) (hs : UniqueDiffOn 𝕜 s) (h : ContDiffAt 𝕜 (↑n) f x) (hx : x s) :
theorem IteratedDeriv_smul (a : ) (f : ) (m : ) :
theorem qExpansion_ext2 {α : Type u_4} {β : Type u_5} [FunLike α UpperHalfPlane ] [FunLike β UpperHalfPlane ] (f : α) (g : β) (h : f = g) :
@[simp]
theorem IteratedDeriv_zero_fun (n : ) (z : ) :
iteratedDeriv n (fun (x : ) => 0) z = 0
theorem iteratedDeriv_const_eq_zero (m : ) (hm : 0 < m) (c : ) :
(iteratedDeriv m fun (x : ) => c) = fun (x : ) => 0