theorem
modform_tendto_ndhs_zero
{F : Type u_1}
[FunLike F UpperHalfPlane ℂ]
(f : F)
{k : ℤ}
(n : ℕ)
[ModularFormClass F (CongruenceSubgroup.Gamma n) k]
[inst : NeZero n]
:
Filter.Tendsto (fun (x : ℂ) => (⇑f ∘ ↑UpperHalfPlane.ofComplex) (Function.Periodic.invQParam (↑n) x))
(nhdsWithin 0 {0}ᶜ) (nhds (SlashInvariantFormClass.cuspFunction n f 0))
theorem
cuspFunction_mul_zero
(n : ℕ)
(a b : ℤ)
(f : ModularForm (CongruenceSubgroup.Gamma n) a)
(g : ModularForm (CongruenceSubgroup.Gamma n) b)
[inst : NeZero n]
:
theorem
qExpansion_mul_coeff_zero
(n : ℕ)
(a b : ℤ)
(f : ModularForm (CongruenceSubgroup.Gamma n) a)
(g : ModularForm (CongruenceSubgroup.Gamma n) b)
[NeZero n]
:
(PowerSeries.coeff ℂ 0) (ModularFormClass.qExpansion n (f.mul g)) = (PowerSeries.coeff ℂ 0) (ModularFormClass.qExpansion n f) * (PowerSeries.coeff ℂ 0) (ModularFormClass.qExpansion n g)
theorem
cuspFunction_mul
(n : ℕ)
(a b : ℤ)
(f : ModularForm (CongruenceSubgroup.Gamma n) a)
(g : ModularForm (CongruenceSubgroup.Gamma n) b)
[NeZero n]
:
theorem
derivWithin_mul2
(f g : ℂ → ℂ)
(s : Set ℂ)
(hf : DifferentiableOn ℂ f s)
(hd : DifferentiableOn ℂ g s)
:
s.restrict (derivWithin (fun (y : ℂ) => f y * g y) s) = s.restrict (derivWithin f s * g + f * derivWithin g s)
theorem
iteratedDerivWithin_mul
(f g : ℂ → ℂ)
(s : Set ℂ)
(hs : IsOpen s)
(x : ℂ)
(hx : x ∈ s)
(m : ℕ)
(hf : ContDiffOn ℂ ⊤ f s)
(hg : ContDiffOn ℂ ⊤ g s)
:
iteratedDerivWithin m (f * g) s x = ∑ i ∈ Finset.range m.succ, ↑(m.choose i) * iteratedDerivWithin i f s x * iteratedDerivWithin (m - i) g s x
theorem
qExpansion_mul_coeff
(n : ℕ)
(a b : ℤ)
(f : ModularForm (CongruenceSubgroup.Gamma n) a)
(g : ModularForm (CongruenceSubgroup.Gamma n) b)
[NeZero n]
:
theorem
cuspFunction_sub
{k : ℤ}
(n : ℕ)
[NeZero n]
(f g : ModularForm (CongruenceSubgroup.Gamma n) k)
:
theorem
iteratedDerivWithin_eq_iteratedDeriv
{𝕜 : Type u_2}
[NontriviallyNormedField 𝕜]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace 𝕜 F]
{n : ℕ}
(f : 𝕜 → F)
(s : Set 𝕜)
(x : 𝕜)
(hs : UniqueDiffOn 𝕜 s)
(h : ContDiffAt 𝕜 (↑n) f x)
(hx : x ∈ s)
:
theorem
qExpansion_sub
{k : ℤ}
(f g : ModularForm (CongruenceSubgroup.Gamma 1) k)
:
ModularFormClass.qExpansion 1 (f - g) = ModularFormClass.qExpansion 1 f - ModularFormClass.qExpansion 1 g
theorem
cuspFunction_add
{k : ℤ}
(n : ℕ)
[NeZero n]
(f g : ModularForm (CongruenceSubgroup.Gamma n) k)
:
theorem
qExpansion_add
{k : ℤ}
(f g : ModularForm (CongruenceSubgroup.Gamma 1) k)
:
ModularFormClass.qExpansion 1 (f + g) = ModularFormClass.qExpansion 1 f + ModularFormClass.qExpansion 1 g
theorem
qExpansion_smul2
{k : ℤ}
(n : ℕ)
(a : ℂ)
(f : ModularForm (CongruenceSubgroup.Gamma n) k)
[NeZero n]
:
theorem
qExpansion_smul
{k : ℤ}
(n : ℕ)
(a : ℂ)
(f : CuspForm (CongruenceSubgroup.Gamma n) k)
[NeZero n]
:
Equations
- instFunLikeForallUpperHalfPlaneComplex_spherePacking = { coe := fun ⦃a₁ : UpperHalfPlane → ℂ⦄ => a₁, coe_injective' := ⋯ }
theorem
qExpansion_ext2
{α : Type u_4}
{β : Type u_5}
[FunLike α UpperHalfPlane ℂ]
[FunLike β UpperHalfPlane ℂ]
(f : α)
(g : β)
(h : ⇑f = ⇑g)
:
theorem
qExpansion_of_mul
(a b : ℤ)
(f : ModularForm (CongruenceSubgroup.Gamma 1) a)
(g : ModularForm (CongruenceSubgroup.Gamma 1) b)
:
ModularFormClass.qExpansion 1
(((DirectSum.of (ModularForm (CongruenceSubgroup.Gamma 1)) a) f * (DirectSum.of (ModularForm (CongruenceSubgroup.Gamma 1)) b) g)
(a + b)) = ModularFormClass.qExpansion 1 f * ModularFormClass.qExpansion 1 g
@[simp]
theorem
qExpansion_pow
{k : ℤ}
(f : ModularForm (CongruenceSubgroup.Gamma 1) k)
(n : ℕ)
:
ModularFormClass.qExpansion 1 (((DirectSum.of (ModularForm (CongruenceSubgroup.Gamma 1)) k) f ^ n) (↑n * k)) = ModularFormClass.qExpansion 1 f ^ n
theorem
qExpansion_injective
{k : ℤ}
(n : ℕ)
[NeZero n]
(f : ModularForm (CongruenceSubgroup.Gamma n) k)
: