Basic properties of the E₈ lattice #
We define the E₈ lattice in two ways, as the ℤ-span of a chosen basis (E8_Matrix
), and as the set
of vectors in ℝ^8 with sum of coordinates an even integer and coordinates either all integers or
half-integers (E8_Set
). We prove these two definitions are equivalent, and prove various
properties about the E₈ lattice.
Main theorems #
E8_Matrix
: a fixed ℤ-basis for the E₈ latticeE8_is_basis
:E8_Matrix
forms a ℝ-basis of ℝ⁸E8_Set
: the set of vectors in E₈, characterised by relations of their coordinatesE8_Set_eq_span
: the ℤ-span ofE8_Matrix
coincides withE8_Set
E8_norm_eq_sqrt_even
: E₈ is even
TODO #
- Prove E₈ is unimodular
- Prove E₈ is positive-definite
- Documentation and naming
E₈ is characterised as the set of vectors with (1) coordinates summing to an even integer, and (2) all its coordinates either an integer or a half-integer.
Equations
Instances For
theorem
E8.E8'_updateRow₆₇ :
(E8'.updateRow 6 (∑ k : Fin 8, E8.c₆✝ k • E8' k)).updateRow 7
(∑ k : Fin 8, E8.c₇✝ k • E8'.updateRow 6 (∑ k : Fin 8, E8.c₆✝ k • E8' k) k) = !![1, -1, 0, 0, 0, 0, 0, 0;
0, 1, -1, 0, 0, 0, 0, 0;
0, 0, 1, -1, 0, 0, 0, 0;
0, 0, 0, 1, -1, 0, 0, 0;
0, 0, 0, 0, 1, -1, 0, 0;
0, 0, 0, 0, 0, 1, 1, 0;
0, 0, 0, 0, 0, 0, 5 / 2, -1 / 2;
0, 0, 0, 0, 0, 0, 0, -2 / 5]
Equations
Instances For
Equations
Instances For
Equations
- E8.tacticSimp_E8_sum_apply = Lean.ParserDescr.node `E8.tacticSimp_E8_sum_apply 1024 (Lean.ParserDescr.nonReservedSymbol "simp_E8_sum_apply" false)
Instances For
Equations
- E8.E8_AddSubgroup = { carrier := E8.E8_Set, add_mem' := ⋯, zero_mem' := E8.E8_AddSubgroup._proof_2, neg_mem' := ⋯ }
Instances For
Equations
- E8.E8_Lattice = { carrier := E8.E8_Set, add_mem' := ⋯, zero_mem' := E8.E8_Lattice._proof_1, smul_mem' := E8.E8_Lattice._proof_2 }
Instances For
All vectors in E₈ have norm √(2n)
Equations
- One or more equations did not get rendered due to their size.