Documentation

SpherePacking.Basic.PeriodicPacking

theorem aux1 {d : } (S : PeriodicSpherePacking d) (D : Set (EuclideanSpace (Fin d))) (hD_isBounded : Bornology.IsBounded D) :
theorem aux3 {ι : Type u_1} {τ : Type u_2} {s : Set ι} {f : ιSet (EuclideanSpace τ)} {c : ENNReal} (hc : 0 < c) [Fintype τ] [MeasureTheory.NoAtoms MeasureTheory.volume] (h_measurable : xs, MeasurableSet (f x)) (h_bounded : Bornology.IsBounded (⋃ xs, f x)) (h_volume : xs, c MeasureTheory.volume (f x)) (h_disjoint : s.PairwiseDisjoint f) :
theorem aux4 {d : } (S : PeriodicSpherePacking d) (D : Set (EuclideanSpace (Fin d))) (hD_isBounded : Bornology.IsBounded D) (hd : 0 < d) :
Finite ↑(S.centers D)
theorem aux4' {d : } (S : PeriodicSpherePacking d) {ι : Type u_1} [Fintype ι] (b : Basis ι S.lattice) (hd : 0 < d) :
theorem aux4'' {d : } (S : PeriodicSpherePacking d) {ι : Type u_1} [Fintype ι] (b : Basis ι S.lattice) (hd : 0 < d) (v : EuclideanSpace (Fin d)) :
noncomputable def PeriodicSpherePacking.addActionOrbitRelEquiv {d : } (S : PeriodicSpherePacking d) (D : Set (EuclideanSpace (Fin d))) (hD_unique_covers : ∀ (x : EuclideanSpace (Fin d)), ∃! g : S.lattice, g +ᵥ x D) :
Equations
  • One or more equations did not get rendered due to their size.
Instances For
    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      theorem PeriodicSpherePacking.card_centers_inter_isFundamentalDomain {d : } (S : PeriodicSpherePacking d) (D : Set (EuclideanSpace (Fin d))) (hD_isBounded : Bornology.IsBounded D) (hD_unique_covers : ∀ (x : EuclideanSpace (Fin d)), ∃! g : S.lattice, g +ᵥ x D) (hd : 0 < d) :
      theorem PeriodicSpherePacking.encard_centers_inter_isFundamentalDomain {d : } (S : PeriodicSpherePacking d) (D : Set (EuclideanSpace (Fin d))) (hD_isBounded : Bornology.IsBounded D) (hD_unique_covers : ∀ (x : EuclideanSpace (Fin d)), ∃! g : S.lattice, g +ᵥ x D) (hd : 0 < d) :
      noncomputable instance PeriodicSpherePacking.instFintypeNumReps' {d : } (S : PeriodicSpherePacking d) (hd : 0 < d) {D : Set (EuclideanSpace (Fin d))} (hD_isBounded : Bornology.IsBounded D) :
      Equations
      noncomputable def PeriodicSpherePacking.numReps' {d : } (S : PeriodicSpherePacking d) (hd : 0 < d) {D : Set (EuclideanSpace (Fin d))} (hD_isBounded : Bornology.IsBounded D) :
      Equations
      Instances For
        theorem PeriodicSpherePacking.numReps'_nonneg {d : } (S : PeriodicSpherePacking d) (hd : 0 < d) {D : Set (EuclideanSpace (Fin d))} (hD_isBounded : Bornology.IsBounded D) :
        0 S.numReps' hd hD_isBounded
        theorem PeriodicSpherePacking.numReps_eq_numReps' {d : } (S : PeriodicSpherePacking d) (hd : 0 < d) {D : Set (EuclideanSpace (Fin d))} (hD_isBounded : Bornology.IsBounded D) (hD_unique_covers : ∀ (x : EuclideanSpace (Fin d)), ∃! g : S.lattice, g +ᵥ x D) :
        S.numReps = S.numReps' hd hD_isBounded
        theorem PeriodicSpherePacking.aux_ge {d : } (S : PeriodicSpherePacking d) (hd : 0 < d) {ι : Type u_1} [Fintype ι] (b : Basis ι S.lattice) {L : } (hL : xZSpan.fundamentalDomain (Basis.ofZLatticeBasis S.lattice b), x L) (R : ) :
        theorem PeriodicSpherePacking.aux_le {d : } (S : PeriodicSpherePacking d) (hd : 0 < d) {ι : Type u_1} [Fintype ι] (b : Basis ι S.lattice) {L : } (hL : xZSpan.fundamentalDomain (Basis.ofZLatticeBasis S.lattice b), x L) (R : ) :
        theorem aux7 {d : } (S : PeriodicSpherePacking d) (D : Set (EuclideanSpace (Fin d))) {L : } (R : ) (hD_unique_covers : ∀ (x : EuclideanSpace (Fin d)), ∃! g : S.lattice, g +ᵥ x D) (hL : xD, x L) :
        Metric.ball 0 (R - L) xS.lattice Metric.ball 0 R, x +ᵥ D
        theorem PeriodicSpherePacking.aux2_ge {d : } (S : PeriodicSpherePacking d) (D : Set (EuclideanSpace (Fin d))) {L : } (R : ) (hD_unique_covers : ∀ (x : EuclideanSpace (Fin d)), ∃! g : S.lattice, g +ᵥ x D) (hD_measurable : MeasurableSet D) (hL : xD, x L) (hd : 0 < d) :
        theorem aux8 {d : } (S : PeriodicSpherePacking d) (D : Set (EuclideanSpace (Fin d))) {L : } (R : ) (hD_unique_covers : ∀ (x : EuclideanSpace (Fin d)), ∃! g : S.lattice, g +ᵥ x D) (hL : xD, x L) :
        xS.lattice Metric.ball 0 R, x +ᵥ D Metric.ball 0 (R + L)
        theorem PeriodicSpherePacking.aux2_le {d : } (S : PeriodicSpherePacking d) (D : Set (EuclideanSpace (Fin d))) {L : } (R : ) (hD_unique_covers : ∀ (x : EuclideanSpace (Fin d)), ∃! g : S.lattice, g +ᵥ x D) (hD_measurable : MeasurableSet D) (hL : xD, x L) (hd : 0 < d) :
        theorem volume_ball_ratio_tendsto_nhds_one' {d : } {C C' : } (hd : 0 < d) (hC : 0 C) (hC' : 0 C') :
        theorem Filter.map_add_atTop_eq {β : Type u_3} {f : β} (C : ) (α : Filter β) :
        Tendsto f atTop α Tendsto (fun (x : ) => f (x + C)) atTop α
        theorem PeriodicSpherePacking.unique_covers_of_centers {d : } (S : PeriodicSpherePacking d) {D : Set (EuclideanSpace (Fin d))} (hD_unique_covers : ∀ (x : EuclideanSpace (Fin d)), ∃! g : S.lattice, g +ᵥ x D) (x : S.centers) :
        ∃! g : S.lattice, ↑(g +ᵥ x) S.centers D
        theorem PeriodicSpherePacking.centers_union_over_lattice {d : } (S : PeriodicSpherePacking d) {D : Set (EuclideanSpace (Fin d))} (hD_unique_covers : ∀ (x : EuclideanSpace (Fin d)), ∃! g : S.lattice, g +ᵥ x D) :
        S.centers = ⋃ (g : S.lattice), g +ᵥ S.centers D
        noncomputable instance HDivENNReal :
        Equations
        noncomputable instance HMulENNReal :
        Equations
        theorem SpherePacking.density_of_centers_empty {d : } (S : SpherePacking d) (hd : 0 < d) [instEmpty : IsEmpty S.centers] :