This file proves lemmas involving the summability of functions that decay in a manner comparable to inverse powers of the norm function on subsets of Euclidean space.
Equations
Instances For
theorem
DecayingMap.summable_union_disjoint
{α : Type u_1}
{β : Type u_2}
[AddCommMonoid α]
[TopologicalSpace α]
{f : β → α}
[T2Space α]
[ContinuousAdd α]
{s t : Set β}
(hd : Disjoint s t)
(hs : Summable (f ∘ Subtype.val))
(ht : Summable (f ∘ Subtype.val))
:
Summable (f ∘ Subtype.val)
theorem
DecayingMap.IsDecayingMap.subset
{d : ℕ}
{X X' : Set (EuclideanSpace ℝ (Fin d))}
{f : EuclideanSpace ℝ (Fin d) → ℝ}
(hf : IsDecayingMap X f)
(hX' : X' ⊆ X)
:
IsDecayingMap X' f
theorem
DecayingMap.Summable_of_Inv_Pow_Summable'
{d : ℕ}
{X : Set (EuclideanSpace ℝ (Fin d))}
{f : EuclideanSpace ℝ (Fin d) → ℝ}
(hf : IsDecayingMap X f)
(hX : Inv_Pow_Norm_Summable_Over_Set_Euclidean X)
(hne_zero : 0 ∉ X)
:
Summable fun (x : ↑X) => f ↑x
theorem
DecayingMap.Summable.subset
{α : Type u_1}
{β : Type u_2}
[AddCommGroup β]
[UniformSpace β]
[IsUniformAddGroup β]
[CompleteSpace β]
(f : α → β)
{X X' : Set α}
(hX : Summable fun (x : ↑X) => f ↑x)
(hX' : X' ⊆ X)
:
Summable fun (x : ↑X') => f ↑x
theorem
DecayingMap.Inv_Pow_Norm_Summable_Over_Set_Euclidean.subset
{d : ℕ}
{X X' : Set (EuclideanSpace ℝ (Fin d))}
(hX : Inv_Pow_Norm_Summable_Over_Set_Euclidean X)
(hX' : X' ⊆ X)
:
theorem
DecayingMap.Summable_of_Inv_Pow_Summable
{d : ℕ}
{f : EuclideanSpace ℝ (Fin d) → ℝ}
(X : Set (EuclideanSpace ℝ (Fin d)))
(hX : Inv_Pow_Norm_Summable_Over_Set_Euclidean X)
(hf : IsDecayingMap X f)
:
Summable fun (x : ↑X) => f ↑x
theorem
SchwartzMap.Summable_of_Inv_Pow_Summable'
{d : ℕ}
(f : SchwartzMap (EuclideanSpace ℝ (Fin d)) ℝ)
{X : Set (EuclideanSpace ℝ (Fin d))}
(hX : Inv_Pow_Norm_Summable_Over_Set_Euclidean X)
(hne_zero : 0 ∉ X)
:
Summable fun (x : ↑X) => f ↑x
theorem
extracted_1
{d : ℕ}
{X : Set (EuclideanSpace ℝ (Fin d))}
{Λ : Submodule ℤ (EuclideanSpace ℝ (Fin d))}
[DiscreteTopology ↥Λ]
[IsZLattice ℝ Λ]
:
let bℤ := (Module.Free.chooseBasis ℤ ↥Λ).reindex (ZLattice.basis_index_equiv Λ);
let bℝ := Basis.ofZLatticeBasis ℝ Λ bℤ;
let D := {m : EuclideanSpace ℝ (Fin d) | ∀ (i : Fin d), (bℝ.repr m) i ∈ Set.Ico (-1) 1};
Finite ↑(X ∩ D)
theorem
Summable_Inverse_Powers_of_Finite_Orbits
{d : ℕ}
{X : Set (EuclideanSpace ℝ (Fin d))}
{Λ : Submodule ℤ (EuclideanSpace ℝ (Fin d))}
[DiscreteTopology ↥Λ]
[IsZLattice ℝ Λ]
(ρ : AddAction ↥Λ ↑X)
[Fintype (Quotient (AddAction.orbitRel ↥Λ ↑X))]
: