Documentation

SpherePacking.ForMathlib.InvPowSummability

This file proves lemmas involving the summability of functions that decay in a manner comparable to inverse powers of the norm function on subsets of Euclidean space.

def IsDecayingMap {d : } (X : Set (EuclideanSpace (Fin d))) (f : EuclideanSpace (Fin d)) :
Equations
Instances For
    theorem DecayingMap.summable_union_disjoint {α : Type u_1} {β : Type u_2} [AddCommMonoid α] [TopologicalSpace α] {f : βα} [T2Space α] [ContinuousAdd α] {s t : Set β} (hd : Disjoint s t) (hs : Summable (f Subtype.val)) (ht : Summable (f Subtype.val)) :
    theorem DecayingMap.IsDecayingMap.subset {d : } {X X' : Set (EuclideanSpace (Fin d))} {f : EuclideanSpace (Fin d)} (hf : IsDecayingMap X f) (hX' : X' X) :
    theorem DecayingMap.Summable_of_Inv_Pow_Summable' {d : } {X : Set (EuclideanSpace (Fin d))} {f : EuclideanSpace (Fin d)} (hf : IsDecayingMap X f) (hX : Inv_Pow_Norm_Summable_Over_Set_Euclidean X) (hne_zero : 0X) :
    Summable fun (x : X) => f x
    theorem DecayingMap.Summable.subset {α : Type u_1} {β : Type u_2} [AddCommGroup β] [UniformSpace β] [IsUniformAddGroup β] [CompleteSpace β] (f : αβ) {X X' : Set α} (hX : Summable fun (x : X) => f x) (hX' : X' X) :
    Summable fun (x : X') => f x
    theorem SchwartzMap.Summable_of_Inv_Pow_Summable' {d : } (f : SchwartzMap (EuclideanSpace (Fin d)) ) {X : Set (EuclideanSpace (Fin d))} (hX : Inv_Pow_Norm_Summable_Over_Set_Euclidean X) (hne_zero : 0X) :
    Summable fun (x : X) => f x
    theorem extracted_1 {d : } {X : Set (EuclideanSpace (Fin d))} {Λ : Submodule (EuclideanSpace (Fin d))} [DiscreteTopology Λ] [IsZLattice Λ] :
    let bℤ := (Module.Free.chooseBasis Λ).reindex (ZLattice.basis_index_equiv Λ); let bℝ := Basis.ofZLatticeBasis Λ bℤ; let D := {m : EuclideanSpace (Fin d) | ∀ (i : Fin d), (bℝ.repr m) i Set.Ico (-1) 1}; Finite ↑(X D)