Documentation
SpherePacking
.
MagicFunction
.
a
.
Integrability
.
Integrability
Search
return to top
source
Imports
Init
SpherePacking.MagicFunction.a.Integrability.RealIntegrands
SpherePacking.MagicFunction.a.IntegralEstimates.I1
SpherePacking.MagicFunction.a.IntegralEstimates.I2
SpherePacking.MagicFunction.a.IntegralEstimates.I3
SpherePacking.MagicFunction.a.IntegralEstimates.I4
SpherePacking.MagicFunction.a.IntegralEstimates.I5
SpherePacking.MagicFunction.a.IntegralEstimates.I6
Imported by
MagicFunction
.
a
.
Integrability
.
Φ₁_integrableOn
MagicFunction
.
a
.
Integrability
.
Φ₂_integrableOn
MagicFunction
.
a
.
Integrability
.
Φ₃_integrableOn
MagicFunction
.
a
.
Integrability
.
Φ₄_integrableOn
MagicFunction
.
a
.
Integrability
.
Φ₅_integrableOn
MagicFunction
.
a
.
Integrability
.
Φ₆_integrableOn
Integrability
#
In this file, we prove that the integrands
Φⱼ
are integrable.
source
theorem
MagicFunction
.
a
.
Integrability
.
Φ₁_integrableOn
{
r
:
ℝ
}
(
hr
:
r
≥
0
)
:
MeasureTheory.IntegrableOn
(
RealIntegrands.Φ₁
r
)
(
Set.Ioc
0
1
)
MeasureTheory.volume
source
theorem
MagicFunction
.
a
.
Integrability
.
Φ₂_integrableOn
{
r
:
ℝ
}
(
hr
:
r
≥
0
)
:
MeasureTheory.IntegrableOn
(
RealIntegrands.Φ₂
r
)
(
Set.Icc
0
1
)
MeasureTheory.volume
source
theorem
MagicFunction
.
a
.
Integrability
.
Φ₃_integrableOn
{
r
:
ℝ
}
(
hr
:
r
≥
0
)
:
MeasureTheory.IntegrableOn
(
RealIntegrands.Φ₃
r
)
(
Set.Ioc
0
1
)
MeasureTheory.volume
source
theorem
MagicFunction
.
a
.
Integrability
.
Φ₄_integrableOn
{
r
:
ℝ
}
(
hr
:
r
≥
0
)
:
MeasureTheory.IntegrableOn
(
RealIntegrands.Φ₄
r
)
(
Set.Icc
0
1
)
MeasureTheory.volume
source
theorem
MagicFunction
.
a
.
Integrability
.
Φ₅_integrableOn
{
r
:
ℝ
}
(
hr
:
r
≥
0
)
:
MeasureTheory.IntegrableOn
(
RealIntegrands.Φ₅
r
)
(
Set.Ioc
0
1
)
MeasureTheory.volume
source
theorem
MagicFunction
.
a
.
Integrability
.
Φ₆_integrableOn
{
r
:
ℝ
}
(
hr
:
r
≥
0
)
:
MeasureTheory.IntegrableOn
(
RealIntegrands.Φ₆
r
)
(
Set.Ici
1
)
MeasureTheory.volume