Documentation
SpherePacking
.
MagicFunction
.
g
.
Basic
Search
return to top
source
Imports
Init
SpherePacking.Tactic.NormNumI
SpherePacking.MagicFunction.a.Eigenfunction
SpherePacking.MagicFunction.a.SpecialValues
SpherePacking.MagicFunction.b.Eigenfunction
SpherePacking.MagicFunction.b.SpecialValues
Mathlib.Data.Real.Pi.Bounds
Imported by
g
g_zero
fourier_g_zero
g_zero_eq_fourier_g_zero
Viazovska's Magic Function
#
In this file, we define Viazovska's magic funtction
g
.
source
noncomputable def
g
:
SchwartzMap
(
EuclideanSpace
ℝ
(
Fin
8
)
)
ℂ
The Magic Function,
g
.
Equations
g
=
(
↑
Real.pi
*
Complex.I
/
8640
)
•
MagicFunction.FourierEigenfunctions.a
+
(
Complex.I
/
(
240
*
↑
Real.pi
))
•
MagicFunction.FourierEigenfunctions.b
Instances For
source
theorem
g_zero
:
g
0
=
1
source
theorem
fourier_g_zero
:
(
(
SchwartzMap.fourierTransformCLE
ℂ
)
g
)
0
=
1
source
theorem
g_zero_eq_fourier_g_zero
:
g
0
=
(
(
SchwartzMap.fourierTransformCLE
ℂ
)
g
)
0