Documentation

SpherePacking.ModularForms.Eisensteinqexpansions

def E (k : ) (hk : 3 k) :
Equations
Instances For
    def gammaSetN (N : ) :
    Set (Fin 2)
    Equations
    Instances For
      def gammaSetN_map (N : ) (v : (gammaSetN N)) :
      Equations
      Instances For
        theorem gammaSetN_map_eq (N : ) (v : (gammaSetN N)) :
        v = N (gammaSetN_map N v)
        def gammaSetN_Equiv (N : ) (hN : N 0) :
        Equations
        Instances For
          def GammaSet_one_Equiv :
          (Fin 2) (n : ) × (gammaSetN n)
          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            theorem q_exp_iden_2 (k : ) (hk : 3 k) (hk2 : Even k) (z : UpperHalfPlane) :
            ∑' (x : × ), 1 / (x.1 * z + x.2) ^ k = 2 * riemannZeta k + 2 * ∑' (c : ℕ+) (d : ), 1 / (c * z + d) ^ k
            theorem EQ0 (k : ) (z : UpperHalfPlane) :
            ∑' (x : Fin 2), 1 / ((x 0) * z + (x 1)) ^ k = ∑' (x : × ), 1 / (x.1 * z + x.2) ^ k
            theorem EQ1 (k : ) (hk : 3 k) (hk2 : Even k) (z : UpperHalfPlane) :
            ∑' (x : Fin 2), 1 / ((x 0) * z + (x 1)) ^ k = 2 * riemannZeta k + 2 * ((-2 * Real.pi * Complex.I) ^ k / (k - 1).factorial) * ∑' (n : ℕ+), ((ArithmeticFunction.sigma (k - 1)) n) * Complex.exp (2 * Real.pi * Complex.I * z * n)
            theorem EQ22 (k : ) (hk : 3 k) (z : UpperHalfPlane) :
            theorem EQ2 (k : ) (hk : 3 k) (z : UpperHalfPlane) :
            ∑' (x : Fin 2), 1 / ((x 0) * z + (x 1)) ^ k = riemannZeta k * ∑' (c : (EisensteinSeries.gammaSet 1 0)), 1 / ((c 0) * z + (c 1)) ^ k
            theorem E_k_q_expansion (k : ) (hk : 3 k) (hk2 : Even k) (z : UpperHalfPlane) :
            (E (↑k) hk) z = 1 + 1 / riemannZeta k * ((-2 * Real.pi * Complex.I) ^ k / (k - 1).factorial) * ∑' (n : ℕ+), ((ArithmeticFunction.sigma (k - 1)) n) * Complex.exp (2 * Real.pi * Complex.I * z * n)