Equations
- Discriminant_SIF = { toFun := Δ, slash_action_eq' := Discriminant_SIF._proof_1 }
Instances For
Equations
- natPosSMul = { smul := fun (x : ℕ+) (z : UpperHalfPlane) => UpperHalfPlane.mk (↑↑x * ↑z) ⋯ }
Equations
- pnat_smul_stable S = ∀ (n : ℕ+), ∀ s ∈ S, n • s ∈ S
Instances For
theorem
tendsto_neg_cexp_atImInfty
(k : ℕ)
:
Filter.Tendsto (fun (x : UpperHalfPlane) => -Complex.exp (2 * ↑Real.pi * Complex.I * (↑k + 1) * ↑x))
UpperHalfPlane.atImInfty (nhds 0)
theorem
log_one_neg_cexp_tendto_zero
(k : ℕ)
:
Filter.Tendsto
(fun (x : UpperHalfPlane) => Complex.log ((1 - Complex.exp (2 * ↑Real.pi * Complex.I * (↑k + 1) * ↑x)) ^ 24))
UpperHalfPlane.atImInfty (nhds 0)
theorem
Delta_boundedfactor :
Filter.Tendsto
(fun (x : UpperHalfPlane) => ∏' (n : ℕ), (1 - Complex.exp (2 * ↑Real.pi * Complex.I * (↑n + 1) * ↑x)) ^ 24)
UpperHalfPlane.atImInfty (nhds 1)
Equations
- Delta = { toFun := ⇑Discriminant_SIF, slash_action_eq' := Delta._proof_1, holo' := Delta._proof_2, zero_at_infty' := ⋯ }
Instances For
theorem
div_Delta_is_SIF
(k : ℤ)
(f : CuspForm (CongruenceSubgroup.Gamma 1) k)
(γ : Matrix.SpecialLinearGroup (Fin 2) ℤ)
:
def
CuspForm_div_Discriminant
(k : ℤ)
(f : CuspForm (CongruenceSubgroup.Gamma 1) k)
:
ModularForm (CongruenceSubgroup.Gamma 1) (k - 12)
Equations
Instances For
theorem
CuspForm_div_Discriminant_apply
(k : ℤ)
(f : CuspForm (CongruenceSubgroup.Gamma 1) k)
(z : UpperHalfPlane)
:
theorem
CuspForm_div_Discriminant_Add
(k : ℤ)
(x y : CuspForm (CongruenceSubgroup.Gamma 1) k)
:
(fun (f : CuspForm (CongruenceSubgroup.Gamma 1) k) => CuspForm_div_Discriminant k f) (x + y) = (fun (f : CuspForm (CongruenceSubgroup.Gamma 1) k) => CuspForm_div_Discriminant k f) x + (fun (f : CuspForm (CongruenceSubgroup.Gamma 1) k) => CuspForm_div_Discriminant k f) y