Documentation

SpherePacking.ModularForms.Delta

def Δ (z : UpperHalfPlane) :
Equations
Instances For
    theorem DiscriminantProductFormula (z : UpperHalfPlane) :
    Δ z = Complex.exp (2 * Real.pi * Complex.I * z) * ∏' (n : ℕ+), (1 - Complex.exp (2 * Real.pi * Complex.I * n * z)) ^ 24
    theorem Delta_eq_eta_pow (z : UpperHalfPlane) :
    Δ z = η z ^ 24
    Equations
    theorem natPosSMul_apply (c : ℕ+) (z : UpperHalfPlane) :
    ↑(c z) = c * z
    Equations
    Instances For
      theorem Complex.cexp_tsum_eq_tprod_func {α : Type u_1} {ι : Type u_2} (f : ια) (hfn : ∀ (x : α) (n : ι), f n x 0) (hf : ∀ (x : α), Summable fun (n : ι) => log (f n x)) :
      (exp fun (a : α) => ∑' (n : ι), log (f n a)) = fun (a : α) => ∏' (n : ι), f n a
      Equations
      Instances For
        theorem div_Delta_is_SIF (k : ) (f : CuspForm (CongruenceSubgroup.Gamma 1) k) (γ : Matrix.SpecialLinearGroup (Fin 2) ) :
        SlashAction.map (k - 12) γ (f / Delta) = f / Delta
        Equations
        Instances For