Documentation

SpherePacking.ModularForms.Delta

def Δ (z : UpperHalfPlane) :
Equations
Instances For
    theorem DiscriminantProductFormula (z : UpperHalfPlane) :
    Δ z = Complex.exp (2 * Real.pi * Complex.I * z) * ∏' (n : ℕ+), (1 - Complex.exp (2 * Real.pi * Complex.I * n * z)) ^ 24
    theorem Delta_eq_eta_pow (z : UpperHalfPlane) :
    Δ z = η z ^ 24

    Δ as a SlashInvariantForm of weight 12

    Equations
    Instances For
      theorem Δ_periodic (z : UpperHalfPlane) :
      Δ (1 +ᵥ z) = Δ z

      Δ is 1-periodic: Δ(z + 1) = Δ(z)

      theorem Δ_S_transform (z : UpperHalfPlane) :
      Δ (ModularGroup.S z) = z ^ 12 * Δ z

      Δ transforms under S as: Δ(-1/z) = z¹² · Δ(z)

      Equations
      theorem natPosSMul_apply (c : ℕ+) (z : UpperHalfPlane) :
      ↑(c z) = c * z
      Equations
      Instances For
        theorem Complex.cexp_tsum_eq_tprod_func {α : Type u_1} {ι : Type u_2} (f : ια) (hfn : ∀ (x : α) (n : ι), f n x 0) (hf : ∀ (x : α), Summable fun (n : ι) => log (f n x)) :
        (exp fun (a : α) => ∑' (n : ι), log (f n a)) = fun (a : α) => ∏' (n : ι), f n a
        Equations
        Instances For
          Equations
          Instances For
            theorem cexp_aux1 (t : ) :
            theorem cexp_aux2 (t : ) (n : ) :
            Complex.exp (2 * Real.pi * Complex.I * (n + 1) * (Complex.I * t)) = (Real.exp (-(2 * Real.pi * (n + 1) * t)))
            theorem cexp_aux3 (t : ) (n : ) (ht : 0 < t) :
            0 < 1 - Real.exp (-(2 * Real.pi * (n + 1) * t))
            theorem cexp_aux4 (t : ) (n : ) :
            (Complex.exp (-2 * Real.pi * (n + 1) * t)).im = 0
            theorem cexp_aux5 (t : ) :
            (Complex.exp (-(2 * Real.pi * t))).im = 0
            theorem Complex.im_finset_prod_eq_zero_of_im_eq_zero {ι : Type u_3} (s : Finset ι) (f : ι) (h : is, (f i).im = 0) :
            (∏ is, f i).im = 0
            theorem Complex.im_pow_eq_zero_of_im_eq_zero {z : } (hz : z.im = 0) (m : ) :
            (z ^ m).im = 0
            theorem Complex.im_tprod_eq_zero_of_im_eq_zero (f : ) (hf : Multipliable f) (him : ∀ (n : ), (f n).im = 0) :
            (∏' (n : ), f n).im = 0
            theorem re_ResToImagAxis_Delta_eq_real_prod (t : ) (ht : 0 < t) :
            (Function.resToImagAxis Δ t).re = Real.exp (-2 * Real.pi * t) * ∏' (n : ), (1 - Real.exp (-(2 * Real.pi * (n + 1) * t))) ^ 24
            theorem tprod_pos_nat_im (z : UpperHalfPlane) :
            0 < ∏' (n : ), (1 - Real.exp (-(2 * Real.pi * (n + 1) * z.im))) ^ 24