Documentation

SpherePacking.ModularForms.eta

noncomputable def η (z : ) :
Equations
Instances For
    theorem prod_tendstoUniformlyOn_tprod' {α : Type u_1} [TopologicalSpace α] {f : α} (K : Set α) (hK : IsCompact K) (u : ) (hu : Summable u) (h : ∀ (n : ), xK, f n x u n) (hcts : ∀ (n : ), ContinuousOn (fun (x : α) => f n x) K) :
    TendstoUniformlyOn (fun (n : ) (a : α) => iFinset.range n, (1 + f i a)) (fun (a : α) => ∏' (i : ), (1 + f i a)) Filter.atTop K
    theorem eta_tndntunif :
    TendstoLocallyUniformlyOn (fun (n : ) => xFinset.range n, fun (x_1 : ) => 1 + -Complex.exp (2 * Real.pi * Complex.I * (x + 1) * x_1)) (fun (x : ) => ∏' (i : ), (1 + -Complex.exp (2 * Real.pi * Complex.I * (i + 1) * x))) Filter.atTop {x : | 0 < x.im}
    theorem eta_tprod_ne_zero (z : UpperHalfPlane) :
    ∏' (n : ), (1 - Complex.exp (2 * Real.pi * Complex.I * (n + 1) * z)) 0

    Eta is non-vanishing!

    theorem tsum_log_deriv_eqn (z : UpperHalfPlane) :
    ∑' (i : ), logDeriv (fun (x : ) => 1 - Complex.exp (2 * Real.pi * Complex.I * (i + 1) * x)) z = ∑' (n : ), -(2 * Real.pi * Complex.I * (n + 1)) * Complex.exp (2 * Real.pi * Complex.I * (n + 1) * z) / (1 - Complex.exp (2 * Real.pi * Complex.I * (n + 1) * z))
    theorem logDeriv_z_term (z : UpperHalfPlane) :
    logDeriv (fun (z : ) => Complex.exp (2 * Real.pi * Complex.I * z / 24)) z = 2 * Real.pi * Complex.I / 24
    theorem eta_differentiableAt (z : UpperHalfPlane) :
    DifferentiableAt (fun (z : ) => ∏' (n : ), (1 - Complex.exp (2 * Real.pi * Complex.I * (n + 1) * z))) z
    theorem eta_logDeriv_eql (z : UpperHalfPlane) :
    logDeriv (η fun (z : ) => -1 / z) z = logDeriv (csqrt * η) z
    theorem eta_logderivs :
    Set.EqOn (logDeriv (η fun (z : ) => -1 / z)) (logDeriv (csqrt * η)) {z : | 0 < z.im}
    theorem eta_logderivs_const :
    ∃ (z : ), z 0 Set.EqOn (η fun (z : ) => -1 / z) (z (csqrt * η)) {z : | 0 < z.im}
    theorem eta_equality :
    Set.EqOn (η fun (z : ) => -1 / z) ((csqrt Complex.I)⁻¹ (csqrt * η)) {z : | 0 < z.im}