theorem
Complex.summable_nat_multipliable_one_add
(f : ℕ → ℂ)
(hf : Summable f)
:
Multipliable fun (n : ℕ) => 1 + f n
theorem
multipliable_lt_one
(x : ℂ)
(hx : x ∈ Metric.ball 0 1)
:
Multipliable fun (i : ℕ) => 1 - x ^ (i + 1)
theorem
MultipliableEtaProductExpansion_pnat
(z : UpperHalfPlane)
:
Multipliable fun (n : ℕ+) => 1 - Complex.exp (2 * ↑Real.pi * Complex.I * ↑↑n * ↑z)
theorem
tprod_ne_zero
(x : UpperHalfPlane)
(f : ℕ → UpperHalfPlane → ℂ)
(hf : ∀ (i : ℕ) (x : UpperHalfPlane), 1 + f i x ≠ 0)
(hu : ∀ (x : UpperHalfPlane), Summable fun (n : ℕ) => f n x)
:
theorem
Multipliable_pow
{ι : Type u_1}
(f : ι → ℂ)
(hf : Multipliable f)
(n : ℕ)
:
Multipliable fun (i : ι) => f i ^ n