Documentation

SpherePacking.ModularForms.summable_lems

theorem int_sum_neg {α : Type u_1} [AddCommMonoid α] [TopologicalSpace α] [T2Space α] (f : α) :
∑' (d : ), f d = ∑' (d : ), f (-d)
theorem summable_neg {α : Type u_1} [TopologicalSpace α] [AddCommMonoid α] (f : α) (hf : Summable f) :
Summable fun (d : ) => f (-d)
theorem aux33 (f : ) (hf : Summable f) :
∑' (n : ), f n = limUnder Filter.atTop fun (N : ) => nFinset.range N, f n
theorem tsum_pnat_eq_tsum_succ3 {α : Type u_1} [TopologicalSpace α] [AddCommMonoid α] [T2Space α] (f : α) :
∑' (n : ℕ+), f n = ∑' (n : ), f (n + 1)
theorem nat_pos_tsum2 {α : Type u_1} [TopologicalSpace α] [AddCommMonoid α] (f : α) (hf : f 0 = 0) :
(Summable fun (x : ℕ+) => f x) Summable f
theorem tsum_pNat {α : Type u_1} [AddCommGroup α] [UniformSpace α] [IsUniformAddGroup α] [T2Space α] [CompleteSpace α] (f : α) (hf : f 0 = 0) :
∑' (n : ℕ+), f n = ∑' (n : ), f n
theorem tsum_pnat_eq_tsum_succ4 {α : Type u_1} [TopologicalSpace α] [AddCommGroup α] [IsTopologicalAddGroup α] [T2Space α] (f : α) (hf : Summable f) :
f 0 + ∑' (n : ℕ+), f n = ∑' (n : ), f n
theorem nat_pos_tsum2' {α : Type u_1} [TopologicalSpace α] [AddCommMonoid α] (f : α) :
(Summable fun (x : ℕ+) => f x) Summable fun (x : ) => f (x + 1)
theorem int_nat_sum {α : Type u_1} [AddCommGroup α] [UniformSpace α] [IsUniformAddGroup α] [CompleteSpace α] (f : α) :
Summable fSummable fun (x : ) => f x
theorem HasSum.nonneg_add_neg {α : Type u_1} [TopologicalSpace α] [AddCommGroup α] [IsTopologicalAddGroup α] [T2Space α] {a b : α} {f : α} (hnonneg : HasSum (fun (n : ) => f n) a) (hneg : HasSum (fun (n : ) => f (-n.succ)) b) :
HasSum f (a + b)
theorem HasSum.pos_add_zero_add_neg {α : Type u_1} [TopologicalSpace α] [AddCommGroup α] [IsTopologicalAddGroup α] [T2Space α] {a b : α} {f : α} (hpos : HasSum (fun (n : ) => f (n + 1)) a) (hneg : HasSum (fun (n : ) => f (-n.succ)) b) :
HasSum f (a + f 0 + b)
theorem int_tsum_pNat {α : Type u_1} [UniformSpace α] [CommRing α] [IsUniformAddGroup α] [CompleteSpace α] [T2Space α] (f : α) (hf2 : Summable f) :
∑' (n : ), f n = f 0 + ∑' (n : ℕ+), f n + ∑' (m : ℕ+), f (-m)
theorem upp_half_not_ints (z : UpperHalfPlane) (n : ) :
z n
theorem aus (a b : ) :
a + b 0 a -b
theorem pnat_inv_sub_squares (z : UpperHalfPlane) :
(fun (n : ℕ+) => 1 / (z - n) + 1 / (z + n)) = fun (n : ℕ+) => 2 * z * (1 / (z ^ 2 - n ^ 2))
theorem upper_half_plane_ne_int_pow_two (z : UpperHalfPlane) (n : ) :
z ^ 2 - n ^ 2 0
theorem upbnd (z : UpperHalfPlane) (d : ) :
d ^ 2 * EisensteinSeries.r z ^ 2 z ^ 2 - d ^ 2
theorem lhs_summable (z : UpperHalfPlane) :
Summable fun (n : ℕ+) => 1 / (z - n) + 1 / (z + n)
theorem sum_int_even {α : Type u_1} [UniformSpace α] [CommRing α] [IsUniformAddGroup α] [CompleteSpace α] [T2Space α] (f : α) (hf : ∀ (n : ), f n = f (-n)) (hf2 : Summable f) :
∑' (n : ), f n = f 0 + 2 * ∑' (n : ℕ+), f n
theorem neg_div_neg_aux (a b : ) :
-a / b = a / -b
theorem summable_diff (z : UpperHalfPlane) (d : ) :
Summable fun (m : ℕ+) => 1 / (-d / z - m) + 1 / (-d / z + m)
theorem arg1 (a b c d e f g h : ) :
e / f + g / h - a / b - c / d = e / f + g / h + a / -b + c / -d
theorem sum_int_pnat3 (z : UpperHalfPlane) (d : ) :
∑' (m : ℕ+), (1 / (m * z - d) + 1 / (-m * z + -d) - 1 / (m * z + d) - 1 / (-m * z + d)) = 2 / z * ∑' (m : ℕ+), (1 / (-d / z - m) + 1 / (-d / z + m))
theorem pow_max (x y : ) :
max x y ^ 2 = max (x ^ 2) (y ^ 2)
theorem aux (a b c : ) (ha : 0 < a) (hb : 0 < b) (hc : 0 < c) :
a⁻¹ c * b⁻¹ b c * a
theorem summable_hammerTime {α : Type} [NormedField α] [CompleteSpace α] (f : α) (a : ) (hab : 1 < a) (hf : (fun (n : ) => (f n)⁻¹) =O[Filter.cofinite] fun (n : ) => (|n| ^ a)⁻¹) :
Summable fun (n : ) => (f n)⁻¹
theorem summable_hammerTime_nat {α : Type} [NormedField α] [CompleteSpace α] (f : α) (a : ) (hab : 1 < a) (hf : (fun (n : ) => (f n)⁻¹) =O[Filter.cofinite] fun (n : ) => (|n| ^ a)⁻¹) :
Summable fun (n : ) => (f n)⁻¹
theorem summable_diff_denom (z : UpperHalfPlane) (i : ) :
Summable fun (m : ) => (m * z + i + 1)⁻¹ * (m * z + i)⁻¹
theorem summable_pain (z : UpperHalfPlane) (i : ) :
Summable fun (m : ) => 1 / (m * z + i) - 1 / (m * z + i + 1)
theorem vector_norm_bound (b : Fin 2) (hb : b 0) (HB1 : b ![0, -1]) :
![b 0, b 1 + 1] ^ (-1) * b ^ (-2) 2 * b ^ (-3)
theorem G_2_alt_summable (z : UpperHalfPlane) :
Summable fun (m : Fin 2) => 1 / (((m 0) * z + (m 1)) ^ 2 * ((m 0) * z + (m 1) + 1))
def δ (a b : ) :
Equations
Instances For
    @[simp]
    theorem δ_eq :
    δ 0 0 = 1
    @[simp]
    theorem δ_eq2 :
    δ 0 (-1) = 2
    theorem δ_neq (a b : ) (h : a 0) :
    δ a b = 0
    theorem G_2_alt_summable_δ (z : UpperHalfPlane) :
    Summable fun (m : Fin 2) => 1 / (((m 0) * z + (m 1)) ^ 2 * ((m 0) * z + (m 1) + 1)) + δ (m 0) (m 1)
    theorem G2_prod_summable1 (z : UpperHalfPlane) (b : ) :
    Summable fun (c : ) => (b * z + c + 1)⁻¹ * ((b * z + c) ^ 2)⁻¹
    theorem G2_prod_summable1_δ (z : UpperHalfPlane) (b : ) :
    Summable fun (c : ) => (b * z + c + 1)⁻¹ * ((b * z + c) ^ 2)⁻¹ + δ b c
    theorem G2_alt_indexing_δ (z : UpperHalfPlane) :
    ∑' (m : Fin 2), (1 / (((m 0) * z + (m 1)) ^ 2 * ((m 0) * z + (m 1) + 1)) + δ (m 0) (m 1)) = ∑' (m : ) (n : ), (1 / ((m * z + n) ^ 2 * (m * z + n + 1)) + δ m n)
    theorem G2_alt_indexing2_δ (z : UpperHalfPlane) :
    ∑' (m : Fin 2), (1 / (((m 0) * z + (m 1)) ^ 2 * ((m 0) * z + (m 1) + 1)) + δ (m 0) (m 1)) = ∑' (n : ) (m : ), (1 / ((m * z + n) ^ 2 * (m * z + n + 1)) + δ m n)
    theorem summable_1 (k : ) (z : UpperHalfPlane) (hk : 1 k) :
    Summable fun (b : ) => ((z - b) ^ (k + 1))⁻¹
    theorem summable_2 (k : ) (z : UpperHalfPlane) (hk : 1 k) :
    Summable fun (b : ) => ((z + b) ^ (k + 1))⁻¹
    theorem summable_3 (m : ) (y : {z : | 0 < z.im}) :
    Summable fun (n : ℕ+) => (-1) ^ m * m.factorial * (1 / (y - n) ^ (m + 1)) + (-1) ^ m * m.factorial * (1 / (y + n) ^ (m + 1))
    theorem summable_iter_derv' (k : ) (y : ℍ') :
    Summable fun (n : ) => (2 * Real.pi * Complex.I * n) ^ k * Complex.exp (2 * Real.pi * Complex.I * n * y)
    theorem sigma_eq_sum_div' (k n : ) :
    (ArithmeticFunction.sigma k) n = dn.divisors, (n / d) ^ k
    theorem a33 (k : ) (e : ℕ+) (z : UpperHalfPlane) :
    Summable fun (c : ℕ+) => c ^ k * Complex.exp (2 * Real.pi * Complex.I * e * z * c)
    theorem hsum (k : ) (z : UpperHalfPlane) :
    Summable fun (b : ℕ+) => x(↑b).divisors, b ^ k * Complex.exp (2 * Real.pi * Complex.I * z * b)
    theorem summable_auxil_1 (k : ) (z : UpperHalfPlane) :
    Summable fun (c : (n : ℕ+) × { x : × // x (↑n).divisorsAntidiagonal }) => (↑c.snd).1 ^ k * Complex.exp (2 * Real.pi * Complex.I * z * (↑c.snd).1 * (↑c.snd).2)
    theorem sum_range_zero (f : ) (n : ) :
    mFinset.range (n + 1), f m = f 0 + mFinset.range n, f (m + 1)
    theorem exp_series_ite_deriv_uexp2 (k : ) (x : {z : | 0 < z.im}) :
    iteratedDerivWithin k (fun (z : ) => ∑' (n : ), Complex.exp (2 * Real.pi * Complex.I * n * z)) {z : | 0 < z.im} x = ∑' (n : ), iteratedDerivWithin k (fun (s : ) => Complex.exp (2 * Real.pi * Complex.I * n * s)) {z : | 0 < z.im} x
    theorem exp_series_ite_deriv_uexp'' (k : ) (x : {z : | 0 < z.im}) :
    iteratedDerivWithin k (fun (z : ) => ∑' (n : ), Complex.exp (2 * Real.pi * Complex.I * n * z)) {z : | 0 < z.im} x = ∑' (n : ), (2 * Real.pi * Complex.I * n) ^ k * Complex.exp (2 * Real.pi * Complex.I * n * x)
    theorem exp_series_ite_deriv_uexp''' (k : ) :
    Set.EqOn (iteratedDerivWithin k (fun (z : ) => ∑' (n : ), Complex.exp (2 * Real.pi * Complex.I * n * z)) ℍ') (fun (x : ) => ∑' (n : ), (2 * Real.pi * Complex.I * n) ^ k * Complex.exp (2 * Real.pi * Complex.I * n * x)) ℍ'
    theorem tsum_uexp_contDiffOn (k : ) :
    ContDiffOn (↑k) (fun (z : ) => ∑' (n : ), Complex.exp (2 * Real.pi * Complex.I * n * z)) ℍ'
    theorem iter_der_within_add (k : ℕ+) (x : {z : | 0 < z.im}) :
    iteratedDerivWithin (↑k) (fun (z : ) => Real.pi * Complex.I - (2 * Real.pi * Complex.I) ∑' (n : ), Complex.exp (2 * Real.pi * Complex.I * n * z)) {z : | 0 < z.im} x = -(2 * Real.pi * Complex.I) * ∑' (n : ), (2 * Real.pi * Complex.I * n) ^ k * Complex.exp (2 * Real.pi * Complex.I * n * x)
    theorem iter_exp_eqOn (k : ℕ+) :
    Set.EqOn (iteratedDerivWithin (↑k) (fun (z : ) => Real.pi * Complex.I - (2 * Real.pi * Complex.I) ∑' (n : ), Complex.exp (2 * Real.pi * Complex.I * n * z)) {z : | 0 < z.im}) (fun (x : ) => -(2 * Real.pi * Complex.I) * ∑' (n : ), (2 * Real.pi * Complex.I * n) ^ k * Complex.exp (2 * Real.pi * Complex.I * n * x)) {z : | 0 < z.im}
    theorem summable_iter_aut (k : ) (z : UpperHalfPlane) :
    Summable fun (n : ℕ+) => iteratedDerivWithin k (fun (z : ) => 1 / (z - n) + 1 / (z + n)) {z : | 0 < z.im} z
    theorem sub_bound (s : {z : | 0 < z.im}) (A B : ) (hB : 0 < B) (hs : s UpperHalfPlane.verticalStrip A B) (k : ) (n : ℕ+) :
    (-1) ^ (k + 1) * (k + 1).factorial * (1 / (s - n) ^ (k + 2)) (k + 1).factorial / EisensteinSeries.r { re := A, im := B }, hB ^ (k + 2) * (n ^ (k + 2))⁻¹
    theorem add_bound (s : {z : | 0 < z.im}) (A B : ) (hB : 0 < B) (hs : s UpperHalfPlane.verticalStrip A B) (k : ) (n : ℕ+) :
    (-1) ^ (k + 1) * (k + 1).factorial * (1 / (s + n) ^ (k + 2)) (k + 1).factorial / EisensteinSeries.r { re := A, im := B }, hB ^ (k + 2) * (n ^ (k + 2))⁻¹
    theorem aut_bound_on_comp (K : Set {z : | 0 < z.im}) (hk2 : IsCompact K) (k : ) :
    ∃ (u : ℕ+), Summable u ∀ (n : ℕ+) (s : K), derivWithin (fun (z : ) => iteratedDerivWithin k (fun (z : ) => (z - n)⁻¹ + (z + n)⁻¹) {z : | 0 < z.im} z) {z : | 0 < z.im} s u n
    theorem diff_on_aux (k : ) (n : ℕ+) :
    DifferentiableOn ((fun (t : ) => (-1) ^ k * k.factorial * (1 / (t - n) ^ (k + 1))) + fun (t : ) => (-1) ^ k * k.factorial * (1 / (t + n) ^ (k + 1))) {z : | 0 < z.im}
    theorem diff_at_aux (s : {z : | 0 < z.im}) (k : ) (n : ℕ+) :
    DifferentiableAt (fun (z : ) => iteratedDerivWithin k (fun (z : ) => (z - n)⁻¹ + (z + n)⁻¹) {z : | 0 < z.im} z) s
    theorem aut_series_ite_deriv_uexp2 (k : ) (x : UpperHalfPlane) :
    iteratedDerivWithin k (fun (z : ) => ∑' (n : ℕ+), (1 / (z - n) + 1 / (z + n))) {z : | 0 < z.im} x = ∑' (n : ℕ+), iteratedDerivWithin k (fun (z : ) => 1 / (z - n) + 1 / (z + n)) {z : | 0 < z.im} x
    theorem tsum_ider_der_eq (k : ) (x : {z : | 0 < z.im}) :
    ∑' (n : ℕ+), iteratedDerivWithin k (fun (z : ) => 1 / (z - n) + 1 / (z + n)) {z : | 0 < z.im} x = ∑' (n : ℕ+), ((-1) ^ k * k.factorial * (1 / (x - n) ^ (k + 1)) + (-1) ^ k * k.factorial * (1 / (x + n) ^ (k + 1)))
    theorem auxp_series_ite_deriv_uexp''' (k : ) :
    Set.EqOn (iteratedDerivWithin k (fun (z : ) => ∑' (n : ℕ+), (1 / (z - n) + 1 / (z + n))) {z : | 0 < z.im}) (fun (x : ) => ∑' (n : ℕ+), ((-1) ^ k * k.factorial * (1 / (x - n) ^ (k + 1)) + (-1) ^ k * k.factorial * (1 / (x + n) ^ (k + 1)))) {z : | 0 < z.im}
    theorem tsum_aexp_contDiffOn (k : ) :
    ContDiffOn (↑k) (fun (z : ) => ∑' (n : ℕ+), (1 / (z - n) + 1 / (z + n))) {z : | 0 < z.im}
    theorem aux_iter_der_tsum (k : ) (hk : 1 k) (x : UpperHalfPlane) :
    iteratedDerivWithin k ((fun (z : ) => 1 / z) + fun (z : ) => ∑' (n : ℕ+), (1 / (z - n) + 1 / (z + n))) {z : | 0 < z.im} x = (-1) ^ k * k.factorial * ∑' (n : ), 1 / (x + n) ^ (k + 1)
    theorem aux_iter_der_tsum_eqOn (k : ) (hk : 2 k) :
    Set.EqOn (iteratedDerivWithin (k - 1) ((fun (z : ) => 1 / z) + fun (z : ) => ∑' (n : ℕ+), (1 / (z - n) + 1 / (z + n))) {z : | 0 < z.im}) (fun (z : ) => (-1) ^ (k - 1) * (k - 1).factorial * ∑' (n : ), 1 / (z + n) ^ k) {z : | 0 < z.im}
    theorem pos_sum_eq (k : ) (hk : 0 < k) :
    (fun (x : ) => -(2 * Real.pi * Complex.I) * ∑' (n : ), (2 * Real.pi * Complex.I * n) ^ k * Complex.exp (2 * Real.pi * Complex.I * n * x)) = fun (x : ) => -(2 * Real.pi * Complex.I) * ∑' (n : ℕ+), (2 * Real.pi * Complex.I * n) ^ k * Complex.exp (2 * Real.pi * Complex.I * n * x)
    theorem cot_series_repr (z : UpperHalfPlane) :
    Real.pi * (Real.pi * z).cot - 1 / z = ∑' (n : ℕ+), (1 / (z - n) + 1 / (z + n))
    theorem EisensteinSeries_Identity (z : UpperHalfPlane) :
    1 / z + ∑' (n : ℕ+), (1 / (z - n) + 1 / (z + n)) = Real.pi * Complex.I - 2 * Real.pi * Complex.I * ∑' (n : ), Complex.exp (2 * Real.pi * Complex.I * z) ^ n
    theorem q_exp_iden'' (k : ) (hk : 2 k) :
    Set.EqOn (fun (z : ) => (-1) ^ (k - 1) * (k - 1).factorial * ∑' (d : ), 1 / (z + d) ^ k) (fun (z : ) => -(2 * Real.pi * Complex.I) * ∑' (n : ℕ+), (2 * Real.pi * Complex.I * n) ^ (k - 1) * Complex.exp (2 * Real.pi * Complex.I * n * z)) {z : | 0 < z.im}
    theorem q_exp_iden (k : ) (hk : 2 k) (z : UpperHalfPlane) :
    ∑' (d : ), 1 / (z + d) ^ k = (-2 * Real.pi * Complex.I) ^ k / (k - 1).factorial * ∑' (n : ℕ+), n ^ (k - 1) * Complex.exp (2 * Real.pi * Complex.I * z * n)
    theorem tsum_sigma_eqn2 (k : ) (z : UpperHalfPlane) :
    ∑' (c : Fin 2ℕ+), (c 0) ^ k * Complex.exp (2 * Real.pi * Complex.I * z * (c 0) * (c 1)) = ∑' (e : ℕ+), ((ArithmeticFunction.sigma k) e) * Complex.exp (2 * Real.pi * Complex.I * z * e)
    theorem G2_summable_aux (n : ) (z : UpperHalfPlane) (k : ) (hk : 2 k) :
    Summable fun (d : ) => ((n * z + d) ^ k)⁻¹
    theorem tsum_sigma_eqn {k : } (z : UpperHalfPlane) :
    ∑' (c : ℕ+ × ℕ+), c.1 ^ k * Complex.exp (2 * Real.pi * Complex.I * z * c.1 * c.2) = ∑' (e : ℕ+), ((ArithmeticFunction.sigma k) e) * Complex.exp (2 * Real.pi * Complex.I * e * z)
    theorem exp_aux (z : UpperHalfPlane) (n : ) :
    Complex.exp (2 * Real.pi * Complex.I * n * z) = Complex.exp (2 * Real.pi * Complex.I * z) ^ n
    theorem summable_exp_pow (z : UpperHalfPlane) :
    Summable fun (i : ) => Complex.exp (2 * Real.pi * Complex.I * (i + 1) * z)
    theorem a1 (k : ) (e : ℕ+) (z : UpperHalfPlane) :
    Summable fun (c : ) => e ^ (k - 1) * Complex.exp (2 * Real.pi * Complex.I * z * e * c)
    theorem a4 (k : ) (z : UpperHalfPlane) :
    Summable (Function.uncurry fun (b c : ℕ+) => b ^ (k - 1) * Complex.exp (2 * Real.pi * Complex.I * c * z * b))
    theorem t9 (z : UpperHalfPlane) :
    ∑' (m : ), 2 * (-2 * Real.pi * Complex.I) ^ 2 / (2 - 1).factorial * ∑' (n : ℕ+), n ^ (2 - 1) * Complex.exp (2 * Real.pi * Complex.I * (m + 1) * z * n) = -8 * Real.pi ^ 2 * ∑' (n : ℕ+), ((ArithmeticFunction.sigma 1) n) * Complex.exp (2 * Real.pi * Complex.I * n * z)
    theorem summable_pnats (f : ) :
    (Summable fun (n : ℕ+) => f n) Summable f
    theorem auxf (a b c d : ) :
    a / b - c / d = a / b + c / -d
    theorem summable_diff_right_a (z : UpperHalfPlane) (d : ℕ+) :
    Summable fun (n : ) => 1 / (n * z - d) - 1 / (n * z + d)
    theorem summable_diff_right (z : UpperHalfPlane) (d : ℕ+) :
    Summable fun (m : ) => 1 / (m * z - d) - 1 / (m * z + d)
    theorem sum_int_pnatt (z : UpperHalfPlane) (d : ℕ+) :
    2 / d + ∑' (m : ), (1 / (m * z - d) - 1 / (m * z + d)) = ∑' (m : ℕ+), (1 / (m * z - d) + 1 / (-m * z + -d) - 1 / (m * z + d) - 1 / (-m * z + d))
    theorem sum_int_pnat2_pnat (z : UpperHalfPlane) (d : ℕ+) :
    ∑' (m : ), (1 / (m * z - d) - 1 / (m * z + d)) = -2 / d + ∑' (m : ℕ+), (1 / (m * z - d) + 1 / (-m * z + -d) - 1 / (m * z + d) - 1 / (-m * z + d))