theorem
summable_neg
{α : Type u_1}
[TopologicalSpace α]
[AddCommMonoid α]
(f : ℤ → α)
(hf : Summable f)
:
theorem
tsum_pnat_eq_tsum_succ3
{α : Type u_1}
[TopologicalSpace α]
[AddCommMonoid α]
[T2Space α]
(f : ℕ → α)
:
theorem
nat_pos_tsum2
{α : Type u_1}
[TopologicalSpace α]
[AddCommMonoid α]
(f : ℕ → α)
(hf : f 0 = 0)
:
theorem
tsum_pNat
{α : Type u_1}
[AddCommGroup α]
[UniformSpace α]
[IsUniformAddGroup α]
[T2Space α]
[CompleteSpace α]
(f : ℕ → α)
(hf : f 0 = 0)
:
theorem
tsum_pnat_eq_tsum_succ4
{α : Type u_1}
[TopologicalSpace α]
[AddCommGroup α]
[IsTopologicalAddGroup α]
[T2Space α]
(f : ℕ → α)
(hf : Summable f)
:
theorem
int_nat_sum
{α : Type u_1}
[AddCommGroup α]
[UniformSpace α]
[IsUniformAddGroup α]
[CompleteSpace α]
(f : ℤ → α)
:
theorem
HasSum.nonneg_add_neg
{α : Type u_1}
[TopologicalSpace α]
[AddCommGroup α]
[IsTopologicalAddGroup α]
[T2Space α]
{a b : α}
{f : ℤ → α}
(hnonneg : HasSum (fun (n : ℕ) => f ↑n) a)
(hneg : HasSum (fun (n : ℕ) => f (-↑n.succ)) b)
:
theorem
HasSum.pos_add_zero_add_neg
{α : Type u_1}
[TopologicalSpace α]
[AddCommGroup α]
[IsTopologicalAddGroup α]
[T2Space α]
{a b : α}
{f : ℤ → α}
(hpos : HasSum (fun (n : ℕ) => f (↑n + 1)) a)
(hneg : HasSum (fun (n : ℕ) => f (-↑n.succ)) b)
:
theorem
iter_der_within_add
(k : ℕ+)
(x : ↑{z : ℂ | 0 < z.im})
:
iteratedDerivWithin (↑k)
(fun (z : ℂ) =>
↑Real.pi * Complex.I - (2 * ↑Real.pi * Complex.I) • ∑' (n : ℕ), Complex.exp (2 * ↑Real.pi * Complex.I * ↑n * z))
{z : ℂ | 0 < z.im} ↑x = -(2 * ↑Real.pi * Complex.I) * ∑' (n : ℕ), (2 * ↑Real.pi * Complex.I * ↑n) ^ ↑k * Complex.exp (2 * ↑Real.pi * Complex.I * ↑n * ↑x)
theorem
iter_exp_eqOn
(k : ℕ+)
:
Set.EqOn
(iteratedDerivWithin (↑k)
(fun (z : ℂ) =>
↑Real.pi * Complex.I - (2 * ↑Real.pi * Complex.I) • ∑' (n : ℕ), Complex.exp (2 * ↑Real.pi * Complex.I * ↑n * z))
{z : ℂ | 0 < z.im})
(fun (x : ℂ) =>
-(2 * ↑Real.pi * Complex.I) * ∑' (n : ℕ), (2 * ↑Real.pi * Complex.I * ↑n) ^ ↑k * Complex.exp (2 * ↑Real.pi * Complex.I * ↑n * x))
{z : ℂ | 0 < z.im}