Documentation

SpherePacking.ModularForms.tsumderivWithin

@[reducible, inline]
abbrev ℍ' :
Equations
Instances For
    theorem derivWithin_tsum_fun' {α : Type u_1} (f : α) {s : Set } (hs : IsOpen s) (x : ) (hx : x s) (hf : ys, Summable fun (n : α) => f n y) (hu : Ks, IsCompact K∃ (u : α), Summable u ∀ (n : α) (k : K), derivWithin (f n) s k u n) (hf2 : ∀ (n : α) (r : s), DifferentiableAt (f n) r) :
    derivWithin (fun (z : ) => ∑' (n : α), f n z) s x = ∑' (n : α), derivWithin (fun (z : ) => f n z) s x
    theorem der_iter_eq_der_aux2 (k n : ) (r : ℍ') :
    DifferentiableAt (fun (z : ) => iteratedDerivWithin k (fun (s : ) => Complex.exp (2 * Real.pi * Complex.I * n * s)) ℍ' z) r
    theorem der_iter_eq_der2 (k n : ) (r : ℍ') :
    deriv (iteratedDerivWithin k (fun (s : ) => Complex.exp (2 * Real.pi * Complex.I * n * s)) ℍ') r = derivWithin (iteratedDerivWithin k (fun (s : ) => Complex.exp (2 * Real.pi * Complex.I * n * s)) ℍ') ℍ' r
    theorem der_iter_eq_der2' (k n : ) (r : ℍ') :
    derivWithin (iteratedDerivWithin k (fun (s : ) => Complex.exp (2 * Real.pi * Complex.I * n * s)) ℍ') ℍ' r = iteratedDerivWithin (k + 1) (fun (s : ) => Complex.exp (2 * Real.pi * Complex.I * n * s)) ℍ' r
    noncomputable def cts_exp_two_pi_n (K : Set ) :
    C(K, )
    Equations
    Instances For
      theorem iter_deriv_comp_bound2 (K : Set ) (hK1 : K ℍ') (hK2 : IsCompact K) (k : ) :
      ∃ (u : ), Summable u ∀ (n : ) (r : K), derivWithin (iteratedDerivWithin k (fun (s : ) => Complex.exp (2 * Real.pi * Complex.I * n * s)) ℍ') ℍ' r u n
      theorem hasDerivAt_tsum_fun {α : Type u_1} (f : α) {s : Set } (hs : IsOpen s) (x : ) (hx : x s) (hf : ys, Summable fun (n : α) => f n y) (hu : Ks, IsCompact K∃ (u : α), Summable u ∀ (n : α) (k : K), derivWithin (f n) s k u n) (hf2 : ∀ (n : α) (r : s), DifferentiableAt (f n) r) :
      HasDerivAt (fun (z : ) => ∑' (n : α), f n z) (∑' (n : α), derivWithin (fun (z : ) => f n z) s x) x
      theorem hasDerivWithinAt_tsum_fun {α : Type u_1} (f : α) {s : Set } (hs : IsOpen s) (x : ) (hx : x s) (hf : ys, Summable fun (n : α) => f n y) (hu : Ks, IsCompact K∃ (u : α), Summable u ∀ (n : α) (k : K), derivWithin (f n) s k u n) (hf2 : ∀ (n : α) (r : s), DifferentiableAt (f n) r) :
      HasDerivWithinAt (fun (z : ) => ∑' (n : α), f n z) (∑' (n : α), derivWithin (fun (z : ) => f n z) s x) s x
      theorem iter_deriv_comp_bound3 (K : Set ) (hK1 : K ℍ') (hK2 : IsCompact K) (k : ) :
      ∃ (u : ), Summable u ∀ (n : ) (r : K), (2 * |Real.pi| * n) ^ k * Complex.exp (2 * Real.pi * Complex.I * n * r) u n