theorem
derivWithin_tsum_fun'
{α : Type u_1}
(f : α → ℂ → ℂ)
{s : Set ℂ}
(hs : IsOpen s)
(x : ℂ)
(hx : x ∈ s)
(hf : ∀ y ∈ s, Summable fun (n : α) => f n y)
(hu : ∀ K ⊆ s, IsCompact K → ∃ (u : α → ℝ), Summable u ∧ ∀ (n : α) (k : ↑K), ‖derivWithin (f n) s ↑k‖ ≤ u n)
(hf2 : ∀ (n : α) (r : ↑s), DifferentiableAt ℂ (f n) ↑r)
:
derivWithin (fun (z : ℂ) => ∑' (n : α), f n z) s x = ∑' (n : α), derivWithin (fun (z : ℂ) => f n z) s x
theorem
der_iter_eq_der_aux2
(k n : ℕ)
(r : ↑ℍ')
:
DifferentiableAt ℂ
(fun (z : ℂ) => iteratedDerivWithin k (fun (s : ℂ) => Complex.exp (2 * ↑Real.pi * Complex.I * ↑n * s)) ℍ' z) ↑r
theorem
der_iter_eq_der2
(k n : ℕ)
(r : ↑ℍ')
:
deriv (iteratedDerivWithin k (fun (s : ℂ) => Complex.exp (2 * ↑Real.pi * Complex.I * ↑n * s)) ℍ') ↑r = derivWithin (iteratedDerivWithin k (fun (s : ℂ) => Complex.exp (2 * ↑Real.pi * Complex.I * ↑n * s)) ℍ') ℍ' ↑r
theorem
der_iter_eq_der2'
(k n : ℕ)
(r : ↑ℍ')
:
derivWithin (iteratedDerivWithin k (fun (s : ℂ) => Complex.exp (2 * ↑Real.pi * Complex.I * ↑n * s)) ℍ') ℍ' ↑r = iteratedDerivWithin (k + 1) (fun (s : ℂ) => Complex.exp (2 * ↑Real.pi * Complex.I * ↑n * s)) ℍ' ↑r
theorem
hasDerivAt_tsum_fun
{α : Type u_1}
(f : α → ℂ → ℂ)
{s : Set ℂ}
(hs : IsOpen s)
(x : ℂ)
(hx : x ∈ s)
(hf : ∀ y ∈ s, Summable fun (n : α) => f n y)
(hu : ∀ K ⊆ s, IsCompact K → ∃ (u : α → ℝ), Summable u ∧ ∀ (n : α) (k : ↑K), ‖derivWithin (f n) s ↑k‖ ≤ u n)
(hf2 : ∀ (n : α) (r : ↑s), DifferentiableAt ℂ (f n) ↑r)
:
HasDerivAt (fun (z : ℂ) => ∑' (n : α), f n z) (∑' (n : α), derivWithin (fun (z : ℂ) => f n z) s x) x
theorem
hasDerivWithinAt_tsum_fun
{α : Type u_1}
(f : α → ℂ → ℂ)
{s : Set ℂ}
(hs : IsOpen s)
(x : ℂ)
(hx : x ∈ s)
(hf : ∀ y ∈ s, Summable fun (n : α) => f n y)
(hu : ∀ K ⊆ s, IsCompact K → ∃ (u : α → ℝ), Summable u ∧ ∀ (n : α) (k : ↑K), ‖derivWithin (f n) s ↑k‖ ≤ u n)
(hf2 : ∀ (n : α) (r : ↑s), DifferentiableAt ℂ (f n) ↑r)
:
HasDerivWithinAt (fun (z : ℂ) => ∑' (n : α), f n z) (∑' (n : α), derivWithin (fun (z : ℂ) => f n z) s x) s x