Documentation

SpherePacking.ModularForms.E2

Maybe this is the definition we want as I cant see how to easily show the other outer sum is absolutely convergent.

Equations
Instances For
    Equations
    Instances For
      Equations
      Instances For
        @[reducible, inline]
        Equations
        Instances For
          theorem coe2_mul (A B : Matrix.SpecialLinearGroup (Fin 2) ) :
          ↑(A * B) = A * B
          Equations
          Instances For
            theorem D₂_apply (γ : Matrix.SpecialLinearGroup (Fin 2) ) (z : UpperHalfPlane) :
            D₂ γ z = 2 * Real.pi * Complex.I * (γ 1 0) / ((γ 1 0) * z + (γ 1 1))
            theorem extracted_77 (z : UpperHalfPlane) (n : ) :
            Summable fun (b : ) => ((b * z + n) ^ 2)⁻¹
            theorem extracted_66 (z : UpperHalfPlane) :
            ((fun (x : ) => (z ^ 2)⁻¹) * fun (N : ) => xFinset.Ico (-N) N, ∑' (n : ), ((x * (-z)⁻¹ + n) ^ 2)⁻¹) = fun (N : ) => ∑' (n : ), xFinset.Ico (-N) N, ((n * z + x) ^ 2)⁻¹
            theorem G2_S_act (z : UpperHalfPlane) :
            (z ^ 2)⁻¹ * G₂ (ModularGroup.S z) = limUnder Filter.atTop fun (N : ) => ∑' (n : ), mFinset.Ico (-N) N, 1 / (n * z + m) ^ 2
            theorem series_eql' (z : UpperHalfPlane) :
            Real.pi * Complex.I - 2 * Real.pi * Complex.I * ∑' (n : ), Complex.exp (2 * Real.pi * Complex.I * z * n) = 1 / z + ∑' (n : ℕ+), (1 / (z - n) + 1 / (z + n))
            theorem extracted_summable (z : UpperHalfPlane) (n : ℕ+) :
            Summable fun (m : ) => Complex.exp (2 * Real.pi * Complex.I * (-n / z) * m)
            theorem tsum_exp_tendsto_zero (z : UpperHalfPlane) :
            Filter.Tendsto (fun (x : ℕ+) => 2 / z * 2 * Real.pi * Complex.I * ∑' (n : ), Complex.exp (2 * Real.pi * Complex.I * (-x / z) * n)) Filter.atTop (nhds (4 * Real.pi * Complex.I / z))
            theorem extracted_12 (z : UpperHalfPlane) :
            Filter.Tendsto (fun (n : ) => 2 / z * ∑' (m : ℕ+), (1 / (-n / z - m) + 1 / (-n / z + m))) Filter.atTop (nhds (-2 * Real.pi * Complex.I / z))
            theorem PS3tn22 (z : UpperHalfPlane) :
            Filter.Tendsto (fun (N : ℕ+) => nFinset.Ico (-N) N, ∑' (m : ), (1 / (m * z + n) - 1 / (m * z + n + 1))) Filter.atTop (nhds (-2 * Real.pi * Complex.I / z))
            theorem PS3 (z : UpperHalfPlane) :
            (limUnder Filter.atTop fun (N : ) => nFinset.Ico (-N) N, ∑' (m : ), (1 / (m * z + n) - 1 / (m * z + n + 1))) = -2 * Real.pi * Complex.I / z
            theorem poly_id (z : UpperHalfPlane) (b n : ) :
            (b * z + n + 1)⁻¹ * ((b * z + n) ^ 2)⁻¹ + δ b n + ((b * z + n)⁻¹ - (b * z + n + 1)⁻¹) = ((b * z + n) ^ 2)⁻¹
            theorem extracted_66c (z : UpperHalfPlane) :
            ((fun (x : ) => (z ^ 2)⁻¹) * fun (N : ) => xFinset.Icc (-N) N, ∑' (n : ), ((x * (-z)⁻¹ + n) ^ 2)⁻¹) = fun (N : ) => ∑' (n : ), xFinset.Icc (-N) N, ((n * z + x) ^ 2)⁻¹
            theorem extracted_6 (z : UpperHalfPlane) :
            CauchySeq fun (N : ) => nFinset.Ico (-N) N, ∑' (m : ), (1 / (m * z + n) - 1 / (m * z + n + 1))
            theorem G2_inde_lhs (z : UpperHalfPlane) :
            (z ^ 2)⁻¹ * G₂ (ModularGroup.S z) - -2 * Real.pi * Complex.I / z = ∑' (n : ) (m : ), (1 / ((m * z + n) ^ 2 * (m * z + n + 1)) + δ m n)
            theorem PS1 (z : UpperHalfPlane) (m : ) :
            (limUnder Filter.atTop fun (N : ) => nFinset.Ico (-N) N, (1 / (m * z + n) - 1 / (m * z + n + 1))) = 0
            theorem PS2 (z : UpperHalfPlane) :
            (∑' (m : ), limUnder Filter.atTop fun (N : ) => nFinset.Ico (-N) N, (1 / (m * z + n) - 1 / (m * z + n + 1))) = 0
            theorem auxr (z : UpperHalfPlane) (b : ) :
            ((limUnder Filter.atTop fun (N : ) => nFinset.Ico (-N) N, (1 / ((b * z + n) ^ 2 * (b * z + n + 1)) + δ b n)) + limUnder Filter.atTop fun (N : ) => nFinset.Ico (-N) N, (1 / (b * z + n) - 1 / (b * z + n + 1))) = limUnder Filter.atTop fun (N : ) => nFinset.Ico (-N) N, 1 / (b * z + n) ^ 2
            theorem G2_alt_eq (z : UpperHalfPlane) :
            G₂ z = ∑' (m : ) (n : ), (1 / ((m * z + n) ^ 2 * (m * z + n + 1)) + δ m n)
            theorem ModularGroup.coe_mul (A B : Matrix.SpecialLinearGroup (Fin 2) ) :
            A * B = ↑(A * B)
            theorem denom_diff (A B : Matrix.SpecialLinearGroup (Fin 2) ) (z : UpperHalfPlane) :
            (↑(A * B) 1 0) * UpperHalfPlane.denom B z = (A 1 0) * (↑B).det + (B 1 0) * UpperHalfPlane.denom (A * B) z
            theorem D2_one :
            D₂ 1 = 0
            theorem G2_q_exp (z : UpperHalfPlane) :
            G₂ z = 2 * riemannZeta 2 - 8 * Real.pi ^ 2 * ∑' (n : ℕ+), ((ArithmeticFunction.sigma 1) n) * Complex.exp (2 * Real.pi * Complex.I * n * z)
            theorem tsum_eq_tsum_sigma (z : UpperHalfPlane) :
            ∑' (n : ), (n + 1) * Complex.exp (2 * Real.pi * Complex.I * (n + 1) * z) / (1 - Complex.exp (2 * Real.pi * Complex.I * (n + 1) * z)) = ∑' (n : ), ((ArithmeticFunction.sigma 1) (n + 1)) * Complex.exp (2 * Real.pi * Complex.I * (n + 1) * z)
            theorem E₂_eq (z : UpperHalfPlane) :
            E₂ z = 1 - 24 * ∑' (n : ℕ+), n * Complex.exp (2 * Real.pi * Complex.I * n * z) / (1 - Complex.exp (2 * Real.pi * Complex.I * n * z))

            This we should get from the modular forms repo stuff. Will port these things soon.