theorem
cc
(f : ℤ → ℂ)
(hc : CauchySeq fun (N : ℕ) => ∑ m ∈ Finset.Icc (-↑N) ↑N, f m)
(hs : ∀ (n : ℤ), f n = f (-n))
:
Filter.Tendsto f Filter.atTop (nhds 0)
theorem
sum_Icc_eq_sum_Ico_succ
{α : Type u_1}
[AddCommMonoid α]
(f : ℤ → α)
{l u : ℤ}
(h : l ≤ u)
:
theorem
CauchySeq_Icc_iff_CauchySeq_Ico
(f : ℤ → ℂ)
(hs : ∀ (n : ℤ), f n = f (-n))
(hc : CauchySeq fun (N : ℕ) => ∑ m ∈ Finset.Icc (-↑N) ↑N, f m)
:
CauchySeq fun (N : ℕ) => ∑ m ∈ Finset.Ico (-↑N) ↑N, f m
theorem
tendstozero_inv_linear
(z : UpperHalfPlane)
(b : ℤ)
:
Filter.Tendsto (fun (d : ℕ) => 1 / (↑b * ↑z + ↑d)) Filter.atTop (nhds 0)
theorem
tendstozero_inv_linear_neg
(z : UpperHalfPlane)
(b : ℤ)
:
Filter.Tendsto (fun (d : ℕ) => 1 / (↑b * ↑z - ↑d)) Filter.atTop (nhds 0)
Instances For
theorem
t8
(z : UpperHalfPlane)
:
(fun (N : ℕ) => ∑ m ∈ Finset.Icc (-↑N) ↑N, ∑' (n : ℤ), 1 / (↑m * ↑z + ↑n) ^ 2) = (fun (x : ℕ) => 2 * riemannZeta 2) + fun (N : ℕ) =>
∑ m ∈ Finset.range N,
2 * (-2 * ↑Real.pi * Complex.I) ^ 2 / ↑(2 - 1).factorial * ∑' (n : ℕ+), ↑↑n ^ (2 - 1) * Complex.exp (2 * ↑Real.pi * Complex.I * (↑m + 1) * ↑z * ↑↑n)
theorem
G2_c_tendsto
(z : UpperHalfPlane)
:
Filter.Tendsto
(fun (N : ℕ) =>
∑ x ∈ Finset.range N,
2 * (2 * ↑Real.pi * Complex.I) ^ 2 * ∑' (n : ℕ+), ↑↑n * Complex.exp (2 * ↑Real.pi * Complex.I * (↑x + 1) * ↑z * ↑↑n))
Filter.atTop
(nhds
(-8 * ↑Real.pi ^ 2 * ∑' (n : ℕ+), ↑((ArithmeticFunction.sigma 1) ↑n) * Complex.exp (2 * ↑Real.pi * Complex.I * ↑↑n * ↑z)))