def
ModForm_mk
(Γ : Subgroup (Matrix.SpecialLinearGroup (Fin 2) ℤ))
(k : ℤ)
(f : CuspForm Γ k)
:
ModularForm Γ k
Equations
- ModForm_mk Γ k f = { toFun := ⇑f, slash_action_eq' := ⋯, holo' := ⋯, bdd_at_infty' := ⋯ }
Instances For
theorem
ModForm_mk_inj
(Γ : Subgroup (Matrix.SpecialLinearGroup (Fin 2) ℤ))
(k : ℤ)
(f : CuspForm Γ k)
(hf : f ≠ 0)
:
Equations
- CuspForm_to_ModularForm Γ k = { toFun := fun (f : CuspForm Γ k) => ModForm_mk Γ k f, map_add' := ⋯, map_smul' := ⋯ }
Instances For
def
CuspFormSubmodule
(Γ : Subgroup (Matrix.SpecialLinearGroup (Fin 2) ℤ))
(k : ℤ)
:
Submodule ℂ (ModularForm Γ k)
Equations
Instances For
Equations
Instances For
theorem
mem_CuspFormSubmodule
(Γ : Subgroup (Matrix.SpecialLinearGroup (Fin 2) ℤ))
(k : ℤ)
(f : ModularForm Γ k)
(hf : f ∈ CuspFormSubmodule Γ k)
:
∃ (g : CuspForm Γ k), f = (CuspForm_to_ModularForm Γ k) g
@[instance 100]
instance
CuspFormSubmodule.funLike
{k : ℤ}
{Γ : Subgroup (Matrix.SpecialLinearGroup (Fin 2) ℤ)}
:
FunLike (↥(CuspFormSubmodule Γ k)) UpperHalfPlane ℂ
Equations
- CuspFormSubmodule.funLike = { coe := fun (f : ↥(CuspFormSubmodule Γ k)) => (↑f).toFun, coe_injective' := ⋯ }
instance
instCuspFormClassSubtypeModularFormMemSubmoduleComplexCuspFormSubmodule
(Γ : Subgroup (Matrix.SpecialLinearGroup (Fin 2) ℤ))
(k : ℤ)
:
CuspFormClass (↥(CuspFormSubmodule Γ k)) Γ k
Equations
- IsCuspForm Γ k f = (f ∈ CuspFormSubmodule Γ k)
Instances For
def
IsCuspForm_to_CuspForm
(Γ : Subgroup (Matrix.SpecialLinearGroup (Fin 2) ℤ))
(k : ℤ)
(f : ModularForm Γ k)
(hf : IsCuspForm Γ k f)
:
CuspForm Γ k
Equations
- IsCuspForm_to_CuspForm Γ k f hf = ⋯.choose
Instances For
theorem
CuspForm_to_ModularForm_coe
(Γ : Subgroup (Matrix.SpecialLinearGroup (Fin 2) ℤ))
(k : ℤ)
(f : ModularForm Γ k)
(hf : IsCuspForm Γ k f)
:
theorem
CuspForm_to_ModularForm_Fun_coe
(Γ : Subgroup (Matrix.SpecialLinearGroup (Fin 2) ℤ))
(k : ℤ)
(f : ModularForm Γ k)
(hf : IsCuspForm Γ k f)
:
theorem
IsCuspForm_iff_coeffZero_eq_zero
(k : ℤ)
(f : ModularForm (CongruenceSubgroup.Gamma 1) k)
:
IsCuspForm (CongruenceSubgroup.Gamma 1) k f ↔ (PowerSeries.coeff ℂ 0) (ModularFormClass.qExpansion 1 f) = 0
theorem
CuspFormSubmodule_mem_iff_coeffZero_eq_zero
(k : ℤ)
(f : ModularForm (CongruenceSubgroup.Gamma 1) k)
:
f ∈ CuspFormSubmodule (CongruenceSubgroup.Gamma 1) k ↔ (PowerSeries.coeff ℂ 0) (ModularFormClass.qExpansion 1 f) = 0