Documentation

SpherePacking.ModularForms.JacobiTheta

Jacobi theta functions #

Define Jacobi theta functions Θ₂, Θ₃, Θ₄ and their fourth powers H₂, H₃, H₄. Prove that H₂, H₃, H₄ are modualar forms of weight 2 and level Γ(2). Also Jacobi identity: Θ₂^4 + Θ₄^4 = Θ₃^4.

noncomputable def Θ₂_term (n : ) (τ : UpperHalfPlane) :

Define Θ₂, Θ₃, Θ₄ as series.

Equations
Instances For
    noncomputable def Θ₃_term (n : ) (τ : UpperHalfPlane) :
    Equations
    Instances For
      noncomputable def Θ₄_term (n : ) (τ : UpperHalfPlane) :
      Equations
      Instances For
        noncomputable def Θ₂ (τ : UpperHalfPlane) :
        Equations
        Instances For
          noncomputable def Θ₃ (τ : UpperHalfPlane) :
          Equations
          Instances For
            noncomputable def Θ₄ (τ : UpperHalfPlane) :
            Equations
            Instances For
              noncomputable def H₂ (τ : UpperHalfPlane) :
              Equations
              Instances For
                noncomputable def H₃ (τ : UpperHalfPlane) :
                Equations
                Instances For
                  noncomputable def H₄ (τ : UpperHalfPlane) :
                  Equations
                  Instances For

                    Theta functions as specializations of jacobiTheta₂

                    Slash action of various elements on H₂, H₃, H₄

                    These three transformation laws follow directly from tsum definition.

                    Use α = T * T

                    Use jacobiTheta₂_functional_equation

                    Use β = -S * α^(-1) * S

                    H₂, H₃, H₄ are modular forms of weight 2 and level Γ(2)

                    Equations
                    Instances For
                      Equations
                      Instances For
                        Equations
                        Instances For
                          theorem jacobiTheta₂_term_half_apply (n : ) (z : ) :
                          jacobiTheta₂_term n (z / 2) z = Complex.exp (Real.pi * Complex.I * (n ^ 2 + n) * z)
                          theorem jacobiTheta₂_rel_aux (n : ) (t : ) :
                          (Real.exp (-Real.pi * (n + 1 / 2) ^ 2 * t)) = (Real.exp (-Real.pi * t / 4)) * jacobiTheta₂_term n (Complex.I * t / 2) (Complex.I * t)
                          Equations
                          Instances For
                            Equations
                            Instances For
                              Equations
                              Instances For
                                theorem jacobi_identity (τ : UpperHalfPlane) :
                                Θ₂ τ ^ 4 + Θ₄ τ ^ 4 = Θ₃ τ ^ 4

                                Jacobi identity