Documentation

SpherePacking.ModularForms.ResToImagAxis

noncomputable def ResToImagAxis (F : UpperHalfPlane) :

Restrict a function F : ℍ → ℂ to the positive imaginary axis, i.e. t ↦ F (I * t). If $t \le 0$, then F (I * t) is not defined, so we return 0 in that case.

Equations
Instances For
    noncomputable def Function.resToImagAxis (F : UpperHalfPlane) :

    Dot notation alias for ResToImagAxis.

    Equations
    Instances For
      noncomputable def ResToImagAxis.Real (F : UpperHalfPlane) :

      Function $F : \mathbb{H} \to \mathbb{C}$ whose restriction to the imaginary axis is real-valued.

      Equations
      Instances For
        noncomputable def ResToImagAxis.Pos (F : UpperHalfPlane) :

        Function $F : \mathbb{H} \to \mathbb{C}$ is postive on the imaginary axis.

        Equations
        Instances For
          noncomputable def ResToImagAxis.EventuallyPos (F : UpperHalfPlane) :

          Function $F : \mathbb{H} \to \mathbb{C}$ whose restriction to the imaginary axis is eventually positive, i.e. there exists $t_0 > 0$ such that for all $t \ge t_0$, $F(it)$ is positive.

          Equations
          Instances For

            Restriction and slash action under S: $(F |_k S) (it) = t^{-k} * F(it)$