Restrict a function F : ℍ → ℂ to the positive imaginary axis, i.e. t ↦ F (I * t).
If $t \le 0$, then F (I * t) is not defined, so we return 0 in that case.
Instances For
@[simp]
@[simp]
Function $F : \mathbb{H} \to \mathbb{C}$ is postive on the imaginary axis.
Equations
- ResToImagAxis.Pos F = ∀ (t : ℝ), 0 < t → ∃ (r : ℝ), 0 < r ∧ Function.resToImagAxis F t = ↑r
Instances For
Function $F : \mathbb{H} \to \mathbb{C}$ whose restriction to the imaginary axis is eventually positive, i.e. there exists $t_0 > 0$ such that for all $t \ge t_0$, $F(it)$ is positive.
Equations
Instances For
theorem
ResToImagAxis.Differentiable
(F : UpperHalfPlane → ℂ)
(hF : MDifferentiable (modelWithCornersSelf ℂ ℂ) (modelWithCornersSelf ℂ ℂ) F)
(t : ℝ)
(ht : 0 < t)
:
theorem
ResToImagAxis.SlashActionS
(F : UpperHalfPlane → ℂ)
(k : ℤ)
(t : ℝ)
(ht : 0 < t)
:
Function.resToImagAxis (SlashAction.map k ModularGroup.S F) t = Complex.I ^ k * ↑t ^ (-k) * Function.resToImagAxis F (1 / t)
Restriction and slash action under S: $(F |_k S) (it) = t^{-k} * F(it)$