Documentation

SpherePacking.ModularForms.ResToImagAxis

noncomputable def ResToImagAxis (F : UpperHalfPlane) :

Restrict a function F : ℍ → ℂ to the positive imaginary axis, i.e. t ↦ F (I * t). If $t \le 0$, then F (I * t) is not defined, and we return 0 in that case.

Equations
Instances For
    noncomputable def Function.resToImagAxis (F : UpperHalfPlane) :

    Dot notation alias for ResToImagAxis.

    Equations
    Instances For
      noncomputable def ResToImagAxis.Real (F : UpperHalfPlane) :

      Function $F : \mathbb{H} \to \mathbb{C}$ whose restriction to the imaginary axis is real-valued, i.e. imaginary part is zero.

      Equations
      Instances For
        noncomputable def ResToImagAxis.Pos (F : UpperHalfPlane) :

        Function $F : \mathbb{H} \to \mathbb{C}$ is real and positive on the imaginary axis.

        Equations
        Instances For
          noncomputable def ResToImagAxis.EventuallyPos (F : UpperHalfPlane) :

          Function $F : \mathbb{H} \to \mathbb{C}$ whose restriction to the imaginary axis is eventually positive, i.e. there exists $t_0 > 0$ such that for all $t \ge t_0$, $F(it)$ is real and positive.

          Equations
          Instances For

            Restriction and slash action under S: $(F |_k S) (it) = (it)^{-k} * F(it)$

            theorem ResToImagAxis.Real.add {F G : UpperHalfPlane} (hF : Real F) (hG : Real G) :
            Real (F + G)

            Realenss, positivity and essential positivity are closed under the addition and multiplication.

            theorem ResToImagAxis.Real.mul {F G : UpperHalfPlane} (hF : Real F) (hG : Real G) :
            Real (F * G)
            theorem ResToImagAxis.Real.smul {F : UpperHalfPlane} {c : } (hF : Real F) :
            Real (c F)
            theorem ResToImagAxis.Pos.add {F G : UpperHalfPlane} (hF : Pos F) (hG : Pos G) :
            Pos (F + G)
            theorem ResToImagAxis.Pos.mul {F G : UpperHalfPlane} (hF : Pos F) (hG : Pos G) :
            Pos (F * G)
            theorem ResToImagAxis.Pos.smul {F : UpperHalfPlane} {c : } (hF : Pos F) (hc : 0 < c) :
            Pos fun (z : UpperHalfPlane) => c * F z
            theorem ResToImagAxis.EventuallyPos.smul {F : UpperHalfPlane} {c : } (hF : EventuallyPos F) (hc : 0 < c) :
            EventuallyPos fun (z : UpperHalfPlane) => c * F z

            Polynomial decay of functions with exponential bounds #

            This section establishes that if a function F : ℍ → ℂ is O(exp(-c * im τ)) at infinity, then t^s * F(it) → 0 as t → ∞ for any real power s.

            One application is to cusp forms, which satisfy such exponential decay bounds.

            If F : ℍ → ℂ is O(exp(-c * im τ)) at atImInfty for some c > 0, then the restriction to the imaginary axis t ↦ F(it) is O(exp(-c * t)) at atTop.

            theorem tendsto_rpow_mul_of_isBigO_exp {g : } {s b : } (hb : 0 < b) (hg : g =O[Filter.atTop] fun (t : ) => Real.exp (-b * t)) :
            Filter.Tendsto (fun (t : ) => t ^ s * g t) Filter.atTop (nhds 0)

            The analytic kernel: if g : ℝ → ℂ is eventually bounded by C * exp(-b * t) for some b > 0, then t^s * g(t) → 0 as t → ∞ for any real power s.

            This follows from the fact that t^s * exp(-b * t) → 0 (mathlib's tendsto_rpow_mul_exp_neg_mul_atTop_nhds_zero) combined with the big-O transfer lemma.

            theorem tendsto_rpow_mul_resToImagAxis_of_isBigO_exp {F : UpperHalfPlane} {c : } (hc : 0 < c) (hF : F =O[UpperHalfPlane.atImInfty] fun (τ : UpperHalfPlane) => Real.exp (-c * τ.im)) (s : ) :
            Filter.Tendsto (fun (t : ) => t ^ s * Function.resToImagAxis F t) Filter.atTop (nhds 0)

            If F : ℍ → ℂ is O(exp(-c * im τ)) at atImInfty for some c > 0, then t^s * F(it) → 0 as t → ∞ for any real power s.

            For a cusp form f of level Γ(n), we have t^s * f(it) → 0 as t → ∞ for any real power s.

            This follows from the exponential decay of cusp forms at infinity: f = O(exp(-2π τ.im / n)).

            Fourier expansion approach for polynomial decay #

            This section provides an alternative approach to polynomial decay that works directly from Fourier expansions. If F has a Fourier expansion ∑_{m≥0} a_m exp(2πi(m+n₀)z) with n₀ > 0, then F = O(exp(-2π n₀ · im z)) at atImInfty, which gives t^s * F(it) → 0.

            This is useful for functions with q-expansions starting at a positive index (like (E₂E₄ - E₆)²).

            theorem isBigO_atImInfty_of_fourier_shift {F : UpperHalfPlane} {a : } {n₀ : } {c : } (_hn₀ : 0 < n₀) (_hc : 0 < c) (hF : ∀ (z : UpperHalfPlane), F z = ∑' (m : ), a m * Complex.exp (2 * Real.pi * Complex.I * ↑(m + n₀) * z)) (ha : Summable fun (m : ) => a m * Real.exp (-(2 * Real.pi * c) * m)) :

            If F has a Fourier expansion ∑_{m≥0} a_m exp(2πi(m+n₀)z) with n₀ > 0, and the coefficients are absolutely summable at height im z = c, then F = O(exp(-2π n₀ · im z)) at atImInfty.

            The key bound is: for im z ≥ c, ‖F(z)‖ ≤ (∑_m ‖a_m‖ · exp(-2π c m)) · exp(-2π n₀ · im z)

            theorem tendsto_rpow_mul_resToImagAxis_of_fourier_shift {F : UpperHalfPlane} {a : } {n₀ : } {c : } (hn₀ : 0 < n₀) (hc : 0 < c) (hF : ∀ (z : UpperHalfPlane), F z = ∑' (m : ), a m * Complex.exp (2 * Real.pi * Complex.I * ↑(m + n₀) * z)) (ha : Summable fun (m : ) => a m * Real.exp (-(2 * Real.pi * c) * m)) (s : ) :
            Filter.Tendsto (fun (t : ) => t ^ s * Function.resToImagAxis F t) Filter.atTop (nhds 0)

            If F has a Fourier expansion starting at index n₀ > 0 with absolutely summable coefficients at height c > 0, then t^s * F(it) → 0 as t → ∞ for any real power s.

            This converts a Fourier expansion representation directly into polynomial decay on the imaginary axis.