Documentation

SpherePacking.CohnElkies.Prereqs

instance instNonemptyFin {d : } [Fact (0 < d)] :
def PSF_Conditions {d : } (f : EuclideanSpace (Fin d)) :
Equations
Instances For
    theorem PSF_L {d : } [Fact (0 < d)] (Λ : Submodule (EuclideanSpace (Fin d))) [DiscreteTopology Λ] [IsZLattice Λ] {f : EuclideanSpace (Fin d)} (hf : PSF_Conditions f) (v : EuclideanSpace (Fin d)) :
    ∑' ( : Λ), f (v + ) = 1 / (ZLattice.covolume Λ MeasureTheory.volume) * ∑' (m : (bilinFormOfRealInner.dualSubmodule Λ)), Real.fourierIntegral f m * Complex.exp (2 * Real.pi * Complex.I * (RCLike.wInner 1 v ((WithLp.equiv 2 ((i : Fin d) → (fun (x : Fin d) => ) i)) m)))
    theorem PSF_L' {d : } [Fact (0 < d)] (Λ : Submodule (EuclideanSpace (Fin d))) [DiscreteTopology Λ] [IsZLattice Λ] {f : EuclideanSpace (Fin d)} (hf : PSF_Conditions f) :
    theorem SchwartzMap.PoissonSummation_Lattices {d : } [Fact (0 < d)] (Λ : Submodule (EuclideanSpace (Fin d))) [DiscreteTopology Λ] [IsZLattice Λ] (f : SchwartzMap (EuclideanSpace (Fin d)) ) (v : EuclideanSpace (Fin d)) :
    ∑' ( : Λ), f (v + ) = 1 / (ZLattice.covolume Λ MeasureTheory.volume) * ∑' (m : (bilinFormOfRealInner.dualSubmodule Λ)), Real.fourierIntegral f m * Complex.exp (2 * Real.pi * Complex.I * (RCLike.wInner 1 v ((WithLp.equiv 2 ((i : Fin d) → (fun (x : Fin d) => ) i)) m)))
    theorem Continuous.pos_iff_exists_nhd_pos {E : Type u_1} [TopologicalSpace E] {f : E} (hf₁ : Continuous f) (x : E) :
    0 < f x Unhds x, yU, 0 < f y
    theorem Continuous.pos_iff_exists_measurable_nhd_pos {E : Type u_1} [TopologicalSpace E] [MeasureTheory.MeasureSpace E] [BorelSpace E] {f : E} (hf₁ : Continuous f) (x : E) :
    0 < f x Unhds x, MeasurableSet U yU, 0 < f y
    theorem SchwartzMap.integral_zero_iff_zero_of_nonneg {d : } {f : SchwartzMap (EuclideanSpace (Fin d)) } (hnn : ∀ (x : EuclideanSpace (Fin d)), 0 f x) :
    (v : EuclideanSpace (Fin d)), f v = 0 f = 0
    theorem Complex.exp_neg_real_I_eq_conj {d : } (x m : EuclideanSpace (Fin d)) :
    exp (-(2 * Real.pi * I * (RCLike.wInner 1 x m))) = (starRingEnd ) (exp (2 * Real.pi * I * (RCLike.wInner 1 x m)))