Equations
- PSF_Conditions f = (Summable f ∧ sorry)
Instances For
theorem
PSF_L
{d : ℕ}
[Fact (0 < d)]
(Λ : Submodule ℤ (EuclideanSpace ℝ (Fin d)))
[DiscreteTopology ↥Λ]
[IsZLattice ℝ Λ]
{f : EuclideanSpace ℝ (Fin d) → ℂ}
(hf : PSF_Conditions f)
(v : EuclideanSpace ℝ (Fin d))
:
∑' (ℓ : ↥Λ), f (v + ↑ℓ) = 1 / ↑(ZLattice.covolume Λ MeasureTheory.volume) * ∑' (m : ↥(bilinFormOfRealInner.dualSubmodule Λ)), Real.fourierIntegral f ↑m * Complex.exp
(2 * ↑Real.pi * Complex.I * ↑(RCLike.wInner 1 v ((WithLp.equiv 2 ((i : Fin d) → (fun (x : Fin d) => ℝ) i)) ↑m)))
theorem
PSF_L'
{d : ℕ}
[Fact (0 < d)]
(Λ : Submodule ℤ (EuclideanSpace ℝ (Fin d)))
[DiscreteTopology ↥Λ]
[IsZLattice ℝ Λ]
{f : EuclideanSpace ℝ (Fin d) → ℂ}
(hf : PSF_Conditions f)
:
∑' (ℓ : ↥Λ), f ↑ℓ = 1 / ↑(ZLattice.covolume Λ MeasureTheory.volume) * ∑' (m : ↥(bilinFormOfRealInner.dualSubmodule Λ)), Real.fourierIntegral f ↑m
theorem
SchwartzMap.PoissonSummation_Lattices
{d : ℕ}
[Fact (0 < d)]
(Λ : Submodule ℤ (EuclideanSpace ℝ (Fin d)))
[DiscreteTopology ↥Λ]
[IsZLattice ℝ Λ]
(f : SchwartzMap (EuclideanSpace ℝ (Fin d)) ℂ)
(v : EuclideanSpace ℝ (Fin d))
:
∑' (ℓ : ↥Λ), f (v + ↑ℓ) = 1 / ↑(ZLattice.covolume Λ MeasureTheory.volume) * ∑' (m : ↥(bilinFormOfRealInner.dualSubmodule Λ)), Real.fourierIntegral ⇑f ↑m * Complex.exp
(2 * ↑Real.pi * Complex.I * ↑(RCLike.wInner 1 v ((WithLp.equiv 2 ((i : Fin d) → (fun (x : Fin d) => ℝ) i)) ↑m)))
@[simp]
theorem
SchwartzMap.fourierInversion
(𝕜 : Type u_1)
[RCLike 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ℂ E]
[NormedSpace 𝕜 E]
[SMulCommClass ℂ 𝕜 E]
[CompleteSpace E]
{V : Type u_3}
[NormedAddCommGroup V]
[InnerProductSpace ℝ V]
[FiniteDimensional ℝ V]
[MeasurableSpace V]
[BorelSpace V]
(f : SchwartzMap V E)
:
theorem
Continuous.pos_iff_exists_nhd_pos
{E : Type u_1}
[TopologicalSpace E]
{f : E → ℝ}
(hf₁ : Continuous f)
(x : E)
:
theorem
Continuous.pos_iff_exists_measurable_nhd_pos
{E : Type u_1}
[TopologicalSpace E]
[MeasureTheory.MeasureSpace E]
[BorelSpace E]
{f : E → ℝ}
(hf₁ : Continuous f)
(x : E)
:
instance
instIsOpenPosMeasureVolume_spherePacking
{E : Type u_1}
[NormedAddCommGroup E]
[TopologicalSpace E]
[IsTopologicalAddGroup E]
[MeasureTheory.MeasureSpace E]
[BorelSpace E]
[MeasureTheory.volume.IsAddLeftInvariant]
[MeasureTheory.volume.Regular]
[NeZero MeasureTheory.volume]
:
theorem
Continuous.integral_zero_iff_zero_of_nonneg
{E : Type u_1}
[NormedAddCommGroup E]
[TopologicalSpace E]
[IsTopologicalAddGroup E]
[MeasureTheory.MeasureSpace E]
[BorelSpace E]
[MeasureTheory.volume.IsAddLeftInvariant]
[MeasureTheory.volume.Regular]
[NeZero MeasureTheory.volume]
{f : E → ℝ}
(hf₁ : Continuous f)
(hf₂ : MeasureTheory.Integrable f MeasureTheory.volume)
(hnn : ∀ (x : E), 0 ≤ f x)
:
theorem
SchwartzMap.toFun_eq_zero_iff_zero
{E : Type u_2}
{F : Type u_3}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[NormedAddCommGroup F]
[NormedSpace ℝ F]
(f : SchwartzMap E F)
:
theorem
SchwartzMap.integral_zero_iff_zero_of_nonneg
{d : ℕ}
{f : SchwartzMap (EuclideanSpace ℝ (Fin d)) ℝ}
(hnn : ∀ (x : EuclideanSpace ℝ (Fin d)), 0 ≤ f x)
:
instance
instDecidableEqEuclideanSpaceRealFinOfNat_spherePacking
{d : ℕ}
(v : EuclideanSpace ℝ (Fin d))
:
Equations
instance
instDecidableEqEuclideanSpaceRealFin_spherePacking
{d : ℕ}
:
DecidableEq (EuclideanSpace ℝ (Fin d))