Documentation

SpherePacking.MagicFunction.PolyFourierCoeffBound

noncomputable def MagicFunction.PolyFourierCoeffBound.DivDiscBound (c : ) (n₀ : ) :
Equations
Instances For
    theorem MagicFunction.PolyFourierCoeffBound.hpoly' (c : ) (n₀ : ) (k : ) (hpoly : c =O[Filter.atTop] fun (n : ) => n ^ k) :
    (fun (n : ) => c (n + n₀)) =O[Filter.atTop] fun (n : ) => n ^ k
    theorem MagicFunction.PolyFourierCoeffBound.aux_8 (z : UpperHalfPlane) (hz : 1 / 2 < z.im) :
    0 < ∏' (n : ℕ+), (1 - Real.exp (-2 * Real.pi * n * z.im)) ^ 24
    theorem MagicFunction.PolyFourierCoeffBound.aux_9 (z : UpperHalfPlane) (c : ) (n₀ : ) (i : ) :
    c (i + n₀) * Complex.exp (Real.pi * Complex.I * i * z) = c (i + n₀) * Real.exp (-Real.pi * i * z.im)
    theorem MagicFunction.PolyFourierCoeffBound.aux_10 (z : UpperHalfPlane) (c : ) (n₀ : ) (hcsum : Summable fun (i : ) => MagicFunction.PolyFourierCoeffBound.fouterm✝ c (↑z) (i + n₀)) :
    Summable fun (n : ) => c (n + n₀) * Real.exp (-Real.pi * n * z.im)
    theorem MagicFunction.PolyFourierCoeffBound.DivDiscBoundOfPolyFourierCoeff (z : UpperHalfPlane) (hz : 1 / 2 < z.im) (c : ) (n₀ : ) (hcsum : Summable fun (i : ) => MagicFunction.PolyFourierCoeffBound.fouterm✝ c (↑z) (i + n₀)) (k : ) (hpoly : c =O[Filter.atTop] fun (n : ) => n ^ k) (f : UpperHalfPlane) (hf : ∀ (x : UpperHalfPlane), f x = ∑' (n : ), MagicFunction.PolyFourierCoeffBound.fouterm✝ c (↑x) (n + n₀)) :
    f z / Δ z DivDiscBound c n₀ * Real.exp (-Real.pi * (n₀ - 2) * z.im)
    theorem MagicFunction.PolyFourierCoeffBound.DivDiscBound_pos (c : ) (n₀ : ) (hcn₀ : c n₀ 0) (k : ) (hpoly : c =O[Filter.atTop] fun (n : ) => n ^ k) :
    0 < DivDiscBound c n₀
    theorem MagicFunction.PolyFourierCoeffBound.norm_φ₀_le :
    C₀ > 0, ∀ (z : UpperHalfPlane), 1 / 2 < z.imφ₀ z C₀ * Real.exp (-2 * Real.pi * z.im)