Documentation

SpherePacking.ModularForms.Eisenstein

theorem E4_eq :
E₄ = E 4
theorem E6_eq :
E₆ = E 6
theorem E4_apply (z : UpperHalfPlane) :
E₄ z = (E 4 ) z
theorem E6_apply (z : UpperHalfPlane) :
E₆ z = (E 6 ) z
Equations
Instances For
    Equations
    Instances For
      Equations
      Instances For
        def φ₀'' (z : ) :
        Equations
        Instances For
          def φ₂'' (z : ) :
          Equations
          Instances For
            def φ₄'' (z : ) :
            Equations
            Instances For
              theorem cuspfunc_lim_coef {k : } {F : Type u_1} [inst : FunLike F UpperHalfPlane ] (n : ) (c : ) (f : F) [inst_1 : ModularFormClass F (CongruenceSubgroup.Gamma n) k] [inst_2 : NeZero n] (hf : ∀ (τ : UpperHalfPlane), HasSum (fun (m : ) => c m Function.Periodic.qParam n τ ^ m) (f τ)) (q : ) (hq : q < 1) (hq1 : q 0) :
              HasSum (fun (m : ) => c m q ^ m) (SlashInvariantFormClass.cuspFunction n f q)
              theorem summable_zero_pow {G : Type u_2} [NormedField G] (f : G) :
              Summable fun (m : ) => f m * 0 ^ m
              theorem tsum_zero_pow (f : ) :
              ∑' (m : ), f m * 0 ^ m = f 0
              theorem modfom_q_exp_cuspfunc {k : } {F : Type u_1} [FunLike F UpperHalfPlane ] (n : ) (c : ) (f : F) [ModularFormClass F (CongruenceSubgroup.Gamma n) k] [NeZero n] (hf : ∀ (τ : UpperHalfPlane), HasSum (fun (m : ) => c m Function.Periodic.qParam n τ ^ m) (f τ)) (q : ) :
              q < 1HasSum (fun (m : ) => c m q ^ m) (SlashInvariantFormClass.cuspFunction n f q)
              theorem qParam_surj_onto_ball (n : ) (r : ) (hr : 0 < r) (hr2 : r < 1) [NeZero n] :
              theorem q_exp_unique {k : } (n : ) (c : ) (f : ModularForm (CongruenceSubgroup.Gamma n) k) [NeZero n] (hf : ∀ (τ : UpperHalfPlane), HasSum (fun (m : ) => c m Function.Periodic.qParam n τ ^ m) (f τ)) :
              theorem deriv_mul_eq (f g : ) (hf : Differentiable f) (hg : Differentiable g) :
              deriv (f * g) = deriv f * g + f * deriv g
              theorem sigma_bound (k n : ) :
              def Ek_q (k : ) :
              Equations
              Instances For
                theorem qexpsummable (k : ) (hk : 3 k) (z : UpperHalfPlane) :
                Summable fun (m : ) => Ek_q k m Function.Periodic.qParam 1 z ^ m
                theorem Ek_q_exp_zero (k : ) (hk : 3 k) (hk2 : Even k) :
                theorem Ek_q_exp (k : ) (hk : 3 k) (hk2 : Even k) :
                (fun (m : ) => (PowerSeries.coeff m) (ModularFormClass.qExpansion 1 (E (↑k) hk))) = fun (m : ) => if m = 0 then 1 else 1 / riemannZeta k * ((-2 * Real.pi * Complex.I) ^ k / (k - 1).factorial) * ((ArithmeticFunction.sigma (k - 1)) m)
                theorem E4_q_exp :
                (fun (m : ) => (PowerSeries.coeff m) (ModularFormClass.qExpansion 1 E₄)) = fun (m : ) => if m = 0 then 1 else 240 * ((ArithmeticFunction.sigma 3) m)
                @[simp]
                theorem Complex.I_pow_six :
                I ^ 6 = -1
                @[simp]
                @[simp]
                theorem bernoulli'_six :
                bernoulli' 6 = 1 / 42
                theorem E6_q_exp :
                (fun (m : ) => (PowerSeries.coeff m) (ModularFormClass.qExpansion 1 E₆)) = fun (m : ) => if m = 0 then 1 else -504 * ((ArithmeticFunction.sigma 5) m)
                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  theorem Delta_cuspFuntion_eq :
                  Set.EqOn (SlashInvariantFormClass.cuspFunction 1 Delta) (fun (y : ) => y * ∏' (i : ), (1 - y ^ (i + 1)) ^ 24) (Metric.ball 0 (1 / 2))
                  theorem asdf :
                  TendstoLocallyUniformlyOn (fun (n : ) => xFinset.range n, fun (y : ) => 1 - y ^ (x + 1)) (fun (x : ) => ∏' (i : ), (1 - x ^ (i + 1))) Filter.atTop (Metric.ball 0 (1 / 2))
                  theorem diffwithinat_prod_1 :
                  DifferentiableWithinAt (fun (y : ) => ∏' (i : ), (1 - y ^ (i + 1)) ^ 24) (Metric.ball 0 (1 / 2)) 0
                  theorem Ek_ne_zero (k : ) (hk : 3 k) (hk2 : Even k) :
                  E (↑k) hk 0
                  theorem PowerSeries.coeff_add (f g : PowerSeries ) (n : ) :
                  (coeff n) (f + g) = (coeff n) f + (coeff n) g
                  theorem E₂_mul_E₄_sub_E₆ (z : UpperHalfPlane) :
                  E₂ z * E₄ z - E₆ z = 720 * ∑' (n : ℕ+), n * ((ArithmeticFunction.sigma 3) n) * Complex.exp (2 * Real.pi * Complex.I * n * z)