Equations
Instances For
Equations
Instances For
Equations
- mul_Delta_map k f = ModularForm.mcast ⋯ (f.mul (ModForm_mk (CongruenceSubgroup.Gamma 1) 12 Delta))
Instances For
theorem
mcast_apply
{a b : ℤ}
{Γ : Subgroup (Matrix.SpecialLinearGroup (Fin 2) ℤ)}
(h : a = b)
(f : ModularForm Γ a)
(z : UpperHalfPlane)
:
theorem
mul_Delta_map_eq
(k : ℤ)
(f : ModularForm (CongruenceSubgroup.Gamma 1) (k - 12))
(z : UpperHalfPlane)
:
theorem
mul_Delta_IsCuspForm
(k : ℤ)
(f : ModularForm (CongruenceSubgroup.Gamma 1) (k - 12))
:
IsCuspForm (CongruenceSubgroup.Gamma 1) k (mul_Delta_map k f)
Equations
- Modform_mul_Delta' k f = IsCuspForm_to_CuspForm (CongruenceSubgroup.Gamma 1) k (mul_Delta_map k f) ⋯
Instances For
theorem
mul_apply
{k₁ k₂ : ℤ}
{Γ : Subgroup (Matrix.SpecialLinearGroup (Fin 2) ℤ)}
(f : SlashInvariantForm Γ k₁)
(g : SlashInvariantForm Γ k₂)
(z : UpperHalfPlane)
:
theorem
Modform_mul_Delta_apply
(k : ℤ)
(f : ModularForm (CongruenceSubgroup.Gamma 1) (k - 12))
(z : UpperHalfPlane)
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
cuspfunc_lim_coef
{k : ℤ}
{F : Type u_1}
[inst : FunLike F UpperHalfPlane ℂ]
(n : ℕ)
(c : ℕ → ℂ)
(f : F)
[inst_1 : ModularFormClass F (CongruenceSubgroup.Gamma n) k]
[inst_2 : NeZero n]
(hf : ∀ (τ : UpperHalfPlane), HasSum (fun (m : ℕ) => c m • Function.Periodic.qParam ↑n ↑τ ^ m) (f τ))
(q : ℂ)
(hq : ‖q‖ < 1)
(hq1 : q ≠ 0)
:
HasSum (fun (m : ℕ) => c m • q ^ m) (SlashInvariantFormClass.cuspFunction n f q)
theorem
cuspfunc_Zero
{k : ℤ}
{F : Type u_3}
[FunLike F UpperHalfPlane ℂ]
(n : ℕ)
(f : F)
[NeZero n]
[ModularFormClass F (CongruenceSubgroup.Gamma n) k]
:
theorem
modfom_q_exp_cuspfunc
{k : ℤ}
{F : Type u_3}
[FunLike F UpperHalfPlane ℂ]
(n : ℕ)
(c : ℕ → ℂ)
(f : F)
[ModularFormClass F (CongruenceSubgroup.Gamma n) k]
[NeZero n]
(hf : ∀ (τ : UpperHalfPlane), HasSum (fun (m : ℕ) => c m • Function.Periodic.qParam ↑n ↑τ ^ m) (f τ))
(q : ℂ)
:
theorem
qParam_surj_onto_ball
(n : ℕ)
(r : ℝ)
(hr : 0 < r)
(hr2 : r < 1)
[NeZero n]
:
∃ (z : UpperHalfPlane), ‖Function.Periodic.qParam ↑n ↑z‖ = r
theorem
q_exp_unique
{k : ℤ}
(n : ℕ)
(c : ℕ → ℂ)
(f : ModularForm (CongruenceSubgroup.Gamma n) k)
[NeZero n]
(hf : ∀ (τ : UpperHalfPlane), HasSum (fun (m : ℕ) => c m • Function.Periodic.qParam ↑n ↑τ ^ m) (f τ))
:
theorem
auxasdf
(n : ℕ)
:
(PowerSeries.coeff ℂ n) (ModularFormClass.qExpansion 1 E₄ * ModularFormClass.qExpansion 1 E₆) = ∑ p ∈ Finset.antidiagonal n,
(PowerSeries.coeff ℂ p.1) (ModularFormClass.qExpansion 1 E₄) * (PowerSeries.coeff ℂ p.2) (ModularFormClass.qExpansion 1 E₆)
theorem
E4_q_exp :
(fun (m : ℕ) => (PowerSeries.coeff ℂ m) (ModularFormClass.qExpansion 1 E₄)) = fun (m : ℕ) =>
if m = 0 then 1 else 240 * ↑((ArithmeticFunction.sigma 3) m)
theorem
E6_q_exp :
(fun (m : ℕ) => (PowerSeries.coeff ℂ m) (ModularFormClass.qExpansion 1 E₆)) = fun (m : ℕ) =>
if m = 0 then 1 else -504 * ↑((ArithmeticFunction.sigma 5) m)
theorem
E4E6_coeff_zero_eq_zero :
(PowerSeries.coeff ℂ 0)
(ModularFormClass.qExpansion 1
((1 / 1728) • ((DirectSum.of (ModularForm (CongruenceSubgroup.Gamma 1)) 4) E₄ ^ 3 - (DirectSum.of (ModularForm (CongruenceSubgroup.Gamma 1)) 6) E₆ ^ 2)
12)) = 0
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
asdf :
TendstoLocallyUniformlyOn (fun (n : ℕ) => ∏ x ∈ Finset.range n, fun (y : ℂ) => 1 - y ^ (x + 1))
(fun (x : ℂ) => ∏' (i : ℕ), (1 - x ^ (i + 1))) Filter.atTop (Metric.ball 0 (1 / 2))
theorem
IsCuspForm_weight_lt_eq_zero
(k : ℤ)
(hk : k < 12)
(f : ModularForm (CongruenceSubgroup.Gamma 1) k)
(hf : IsCuspForm (CongruenceSubgroup.Gamma 1) k f)
:
theorem
modularForm_normalise
{k : ℤ}
(f : ModularForm (CongruenceSubgroup.Gamma 1) k)
(hf : ¬IsCuspForm (CongruenceSubgroup.Gamma 1) k f)
:
(PowerSeries.coeff ℂ 0)
(ModularFormClass.qExpansion 1 (((PowerSeries.coeff ℂ 0) (ModularFormClass.qExpansion 1 f))⁻¹ • f)) = 1
theorem
Delta_E4_E6_eq :
ModForm_mk (CongruenceSubgroup.Gamma 1) 12 Delta_E4_E6_aux = (1 / 1728) • ((DirectSum.of (ModularForm (CongruenceSubgroup.Gamma 1)) 4) E₄ ^ 3 - (DirectSum.of (ModularForm (CongruenceSubgroup.Gamma 1)) 6) E₆ ^ 2)
12
Equations
- instFunLikeForallUpperHalfPlaneComplex_spherePacking_1 = { coe := fun ⦃a₁ : UpperHalfPlane → ℂ⦄ => a₁, coe_injective' := ⋯ }
theorem
dim_modforms_eq_one_add_dim_cuspforms
(k : ℕ)
(hk : 3 ≤ ↑k)
(hk2 : Even k)
:
Module.rank ℂ (ModularForm (CongruenceSubgroup.Gamma 1) ↑k) = 1 + Module.rank ℂ (CuspForm (CongruenceSubgroup.Gamma 1) ↑k)
theorem
dim_gen_cong_levels
(k : ℤ)
(Γ : Subgroup (Matrix.SpecialLinearGroup (Fin 2) ℤ))
(hΓ : Γ.index ≠ 0)
:
FiniteDimensional ℂ (ModularForm Γ k)