theorem
cuspfunc_lim_coef
{k : ℤ}
{F : Type u_1}
[inst : FunLike F UpperHalfPlane ℂ]
(n : ℕ)
(c : ℕ → ℂ)
(f : F)
[inst_1 : ModularFormClass F (Subgroup.map (Matrix.SpecialLinearGroup.mapGL ℝ) (CongruenceSubgroup.Gamma n)) k]
[inst_2 : NeZero n]
(hf : ∀ (τ : UpperHalfPlane), HasSum (fun (m : ℕ) => c m • Function.Periodic.qParam ↑n ↑τ ^ m) (f τ))
(q : ℂ)
(hq : ‖q‖ < 1)
(hq1 : q ≠ 0)
:
HasSum (fun (m : ℕ) => c m • q ^ m) (SlashInvariantFormClass.cuspFunction n f q)
theorem
cuspfunc_Zero
{k : ℤ}
{F : Type u_1}
[FunLike F UpperHalfPlane ℂ]
(n : ℕ)
(f : F)
[NeZero n]
[ModularFormClass F (Subgroup.map (Matrix.SpecialLinearGroup.mapGL ℝ) (CongruenceSubgroup.Gamma n)) k]
:
theorem
modfom_q_exp_cuspfunc
{k : ℤ}
{F : Type u_1}
[FunLike F UpperHalfPlane ℂ]
(n : ℕ)
(c : ℕ → ℂ)
(f : F)
[ModularFormClass F (Subgroup.map (Matrix.SpecialLinearGroup.mapGL ℝ) (CongruenceSubgroup.Gamma n)) k]
[NeZero n]
(hf : ∀ (τ : UpperHalfPlane), HasSum (fun (m : ℕ) => c m • Function.Periodic.qParam ↑n ↑τ ^ m) (f τ))
(q : ℂ)
:
theorem
qParam_surj_onto_ball
(n : ℕ)
(r : ℝ)
(hr : 0 < r)
(hr2 : r < 1)
[NeZero n]
:
∃ (z : UpperHalfPlane), ‖Function.Periodic.qParam ↑n ↑z‖ = r
theorem
q_exp_unique
{k : ℤ}
(n : ℕ)
(c : ℕ → ℂ)
(f : ModularForm (Subgroup.map (Matrix.SpecialLinearGroup.mapGL ℝ) (CongruenceSubgroup.Gamma n)) k)
[NeZero n]
(hf : ∀ (τ : UpperHalfPlane), HasSum (fun (m : ℕ) => c m • Function.Periodic.qParam ↑n ↑τ ^ m) (f τ))
:
theorem
auxasdf
(n : ℕ)
:
(PowerSeries.coeff n) (ModularFormClass.qExpansion 1 E₄ * ModularFormClass.qExpansion 1 E₆) = ∑ p ∈ Finset.antidiagonal n,
(PowerSeries.coeff p.1) (ModularFormClass.qExpansion 1 E₄) * (PowerSeries.coeff p.2) (ModularFormClass.qExpansion 1 E₆)
theorem
E4_q_exp :
(fun (m : ℕ) => (PowerSeries.coeff m) (ModularFormClass.qExpansion 1 E₄)) = fun (m : ℕ) =>
if m = 0 then 1 else 240 * ↑((ArithmeticFunction.sigma 3) m)
theorem
E6_q_exp :
(fun (m : ℕ) => (PowerSeries.coeff m) (ModularFormClass.qExpansion 1 E₆)) = fun (m : ℕ) =>
if m = 0 then 1 else -504 * ↑((ArithmeticFunction.sigma 5) m)
theorem
E4E6_coeff_zero_eq_zero :
(PowerSeries.coeff 0)
(ModularFormClass.qExpansion 1
((1 / 1728) • ((DirectSum.of (ModularForm (Subgroup.map (Matrix.SpecialLinearGroup.mapGL ℝ) (CongruenceSubgroup.Gamma 1))) 4)
E₄ ^ 3 - (DirectSum.of (ModularForm (Subgroup.map (Matrix.SpecialLinearGroup.mapGL ℝ) (CongruenceSubgroup.Gamma 1)))
6)
E₆ ^ 2)
12)) = 0
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
asdf :
TendstoLocallyUniformlyOn (fun (n : ℕ) => ∏ x ∈ Finset.range n, fun (y : ℂ) => 1 - y ^ (x + 1))
(fun (x : ℂ) => ∏' (i : ℕ), (1 - x ^ (i + 1))) Filter.atTop (Metric.ball 0 (1 / 2))
theorem
modularForm_normalise
{k : ℤ}
(f : ModularForm (Subgroup.map (Matrix.SpecialLinearGroup.mapGL ℝ) (CongruenceSubgroup.Gamma 1)) k)
(hf : ¬IsCuspForm (CongruenceSubgroup.Gamma 1) k f)
:
(PowerSeries.coeff 0)
(ModularFormClass.qExpansion 1 (((PowerSeries.coeff 0) (ModularFormClass.qExpansion 1 f))⁻¹ • f)) = 1