Documentation

SpherePacking.ModularForms.Derivative

Definition of (Serre) derivative of modular forms. Prove Ramanujan's formulas on derivatives of Eisenstein series.

noncomputable def D (F : UpperHalfPlane) :
Equations
Instances For

    TODO: Remove this or move this to somewhere more appropriate.

    @[simp]

    Basic properties of derivatives: linearity, Leibniz rule, etc.

    @[simp]
    @[simp]
    @[simp]
    noncomputable def serre_D (k : ) :

    Serre derivative of weight k.

    Equations
    Instances For

      Basic properties of Serre derivative: linearity, Leibniz rule, etc.

      theorem serre_D_smul (k : ) (c : ) (F : UpperHalfPlane) (hF : MDifferentiable (modelWithCornersSelf ) (modelWithCornersSelf ) F) (z : UpperHalfPlane) :
      serre_D (↑k) (c F) z = c * serre_D (↑k) F z
      theorem serre_D_mul (k₁ k₂ : ) (F G : UpperHalfPlane) (hF : MDifferentiable (modelWithCornersSelf ) (modelWithCornersSelf ) F) (hG : MDifferentiable (modelWithCornersSelf ) (modelWithCornersSelf ) G) (z : UpperHalfPlane) :
      serre_D (k₁ + k₂) (F * G) z = F z * serre_D (↑k₁) G z + G z * serre_D (↑k₂) F z

      Serre derivative is equivariant under the slash action. More precisely, if F is invariant under the slash action of weight k, then serre_D k F is invariant under the slash action of weight k + 2.

      Serre derivative of Eisenstein series. Use serre_D_slash_invariant and compare constant terms. Note that the dimensions of the spaces of modular forms are all 1.

      noncomputable def X₄₂ :

      Prove modular linear differential equation satisfied by $F$.

      Equations
      Instances For
        noncomputable def Δ_fun :
        Equations
        Instances For
          noncomputable def F :
          Equations
          Instances For
            theorem MLDE_F :
            serre_D 12 (serre_D 10 F) = 5 * 6⁻¹ * F + 172800 * Δ_fun * X₄₂

            Modular linear differential equation satisfied by F. TODO: Move this to a more appropriate place.