Definition of (Serre) derivative of modular forms. Prove Ramanujan's formulas on derivatives of Eisenstein series.
theorem
MDifferentiableAt_DifferentiableAt
{F : UpperHalfPlane → ℂ}
{z : UpperHalfPlane}
(h : MDifferentiableAt (modelWithCornersSelf ℂ ℂ) (modelWithCornersSelf ℂ ℂ) F z)
:
DifferentiableAt ℂ (F ∘ ↑UpperHalfPlane.ofComplex) ↑z
TODO: Remove this or move this to somewhere more appropriate.
TODO: Move this to E2.lean.
@[simp]
theorem
D_add
(F G : UpperHalfPlane → ℂ)
(hF : MDifferentiable (modelWithCornersSelf ℂ ℂ) (modelWithCornersSelf ℂ ℂ) F)
(hG : MDifferentiable (modelWithCornersSelf ℂ ℂ) (modelWithCornersSelf ℂ ℂ) G)
:
Basic properties of derivatives: linearity, Leibniz rule, etc.
@[simp]
theorem
D_sub
(F G : UpperHalfPlane → ℂ)
(hF : MDifferentiable (modelWithCornersSelf ℂ ℂ) (modelWithCornersSelf ℂ ℂ) F)
(hG : MDifferentiable (modelWithCornersSelf ℂ ℂ) (modelWithCornersSelf ℂ ℂ) G)
:
@[simp]
theorem
D_smul
(c : ℂ)
(F : UpperHalfPlane → ℂ)
(hF : MDifferentiable (modelWithCornersSelf ℂ ℂ) (modelWithCornersSelf ℂ ℂ) F)
:
@[simp]
theorem
D_mul
(F G : UpperHalfPlane → ℂ)
(hF : MDifferentiable (modelWithCornersSelf ℂ ℂ) (modelWithCornersSelf ℂ ℂ) F)
(hG : MDifferentiable (modelWithCornersSelf ℂ ℂ) (modelWithCornersSelf ℂ ℂ) G)
:
@[simp]
theorem
D_sq
(F : UpperHalfPlane → ℂ)
(hF : MDifferentiable (modelWithCornersSelf ℂ ℂ) (modelWithCornersSelf ℂ ℂ) F)
:
@[simp]
theorem
D_cube
(F : UpperHalfPlane → ℂ)
(hF : MDifferentiable (modelWithCornersSelf ℂ ℂ) (modelWithCornersSelf ℂ ℂ) F)
:
@[simp]
theorem
serre_D_add
(k : ℤ)
(F G : UpperHalfPlane → ℂ)
(hF : MDifferentiable (modelWithCornersSelf ℂ ℂ) (modelWithCornersSelf ℂ ℂ) F)
(hG : MDifferentiable (modelWithCornersSelf ℂ ℂ) (modelWithCornersSelf ℂ ℂ) G)
:
Basic properties of Serre derivative: linearity, Leibniz rule, etc.
theorem
serre_D_smul
(k : ℤ)
(c : ℂ)
(F : UpperHalfPlane → ℂ)
(hF : MDifferentiable (modelWithCornersSelf ℂ ℂ) (modelWithCornersSelf ℂ ℂ) F)
(z : UpperHalfPlane)
:
theorem
serre_D_mul
(k₁ k₂ : ℤ)
(F G : UpperHalfPlane → ℂ)
(hF : MDifferentiable (modelWithCornersSelf ℂ ℂ) (modelWithCornersSelf ℂ ℂ) F)
(hG : MDifferentiable (modelWithCornersSelf ℂ ℂ) (modelWithCornersSelf ℂ ℂ) G)
(z : UpperHalfPlane)
:
theorem
serre_D_slash_equivariant
(k : ℤ)
(F : UpperHalfPlane → ℂ)
(hF : MDifferentiable (modelWithCornersSelf ℂ ℂ) (modelWithCornersSelf ℂ ℂ) F)
(γ : Matrix.SpecialLinearGroup (Fin 2) ℤ)
:
Serre derivative is equivariant under the slash action. More precisely, if F
is invariant
under the slash action of weight k
, then serre_D k F
is invariant under the slash action
of weight k + 2
.
theorem
serre_D_slash_invariant
(k : ℤ)
(F : UpperHalfPlane → ℂ)
(hF : MDifferentiable (modelWithCornersSelf ℂ ℂ) (modelWithCornersSelf ℂ ℂ) F)
(γ : Matrix.SpecialLinearGroup (Fin 2) ℤ)
(h : SlashAction.map ℂ k γ F = F)
: