Documentation

SpherePacking.CohnElkies.LPBound

theorem fourier_ne_zero {d : } {f : SchwartzMap (EuclideanSpace (Fin d)) } (hne_zero : f 0) :
theorem f_nonneg_at_zero {d : } {f : SchwartzMap (EuclideanSpace (Fin d)) } (hCohnElkies₂ : ∀ (x : EuclideanSpace (Fin d)), (Real.fourierIntegral (⇑f) x).re 0) :
0 (f 0).re
theorem f_zero_pos {d : } {f : SchwartzMap (EuclideanSpace (Fin d)) } (hne_zero : f 0) (hReal : ∀ (x : EuclideanSpace (Fin d)), (f x).re = f x) (hRealFourier : ∀ (x : EuclideanSpace (Fin d)), (Real.fourierIntegral (⇑f) x).re = Real.fourierIntegral (⇑f) x) (hCohnElkies₂ : ∀ (x : EuclideanSpace (Fin d)), (Real.fourierIntegral (⇑f) x).re 0) :
0 < (f 0).re
theorem LinearProgrammingBound' {d : } {f : SchwartzMap (EuclideanSpace (Fin d)) } (hne_zero : f 0) (hReal : ∀ (x : EuclideanSpace (Fin d)), (f x).re = f x) (hRealFourier : ∀ (x : EuclideanSpace (Fin d)), (Real.fourierIntegral (⇑f) x).re = Real.fourierIntegral (⇑f) x) (hCohnElkies₁ : ∀ (x : EuclideanSpace (Fin d)), x 1(f x).re 0) (hCohnElkies₂ : ∀ (x : EuclideanSpace (Fin d)), (Real.fourierIntegral (⇑f) x).re 0) {P : PeriodicSpherePacking d} (hP : P.separation = 1) [Nonempty P.centers] {D : Set (EuclideanSpace (Fin d))} (hD_isBounded : Bornology.IsBounded D) (hD_unique_covers : ∀ (x : EuclideanSpace (Fin d)), ∃! g : P.lattice, g +ᵥ x D) (hd : 0 < d) :
theorem LinearProgrammingBound {d : } {f : SchwartzMap (EuclideanSpace (Fin d)) } (hne_zero : f 0) (hReal : ∀ (x : EuclideanSpace (Fin d)), (f x).re = f x) (hRealFourier : ∀ (x : EuclideanSpace (Fin d)), (Real.fourierIntegral (⇑f) x).re = Real.fourierIntegral (⇑f) x) (hCohnElkies₁ : ∀ (x : EuclideanSpace (Fin d)), x 1(f x).re 0) (hCohnElkies₂ : ∀ (x : EuclideanSpace (Fin d)), (Real.fourierIntegral (⇑f) x).re 0) (hd : 0 < d) :