def
mul_Delta_map
(k : ℤ)
(f : ModularForm (Subgroup.map (Matrix.SpecialLinearGroup.mapGL ℝ) (CongruenceSubgroup.Gamma 1)) (k - 12))
:
Equations
- mul_Delta_map k f = ModularForm.mcast ⋯ (f.mul (ModForm_mk (CongruenceSubgroup.Gamma 1) 12 Delta))
Instances For
theorem
mcast_apply
{a b : ℤ}
{Γ : Subgroup (Matrix.SpecialLinearGroup (Fin 2) ℤ)}
(h : a = b)
(f : ModularForm (Subgroup.map (Matrix.SpecialLinearGroup.mapGL ℝ) Γ) a)
(z : UpperHalfPlane)
:
theorem
mul_Delta_map_eq
(k : ℤ)
(f : ModularForm (Subgroup.map (Matrix.SpecialLinearGroup.mapGL ℝ) (CongruenceSubgroup.Gamma 1)) (k - 12))
(z : UpperHalfPlane)
:
theorem
mul_Delta_map_eq_mul
(k : ℤ)
(f : ModularForm (Subgroup.map (Matrix.SpecialLinearGroup.mapGL ℝ) (CongruenceSubgroup.Gamma 1)) (k - 12))
:
theorem
mul_Delta_IsCuspForm
(k : ℤ)
(f : ModularForm (Subgroup.map (Matrix.SpecialLinearGroup.mapGL ℝ) (CongruenceSubgroup.Gamma 1)) (k - 12))
:
IsCuspForm (CongruenceSubgroup.Gamma 1) k (mul_Delta_map k f)
def
Modform_mul_Delta'
(k : ℤ)
(f : ModularForm (Subgroup.map (Matrix.SpecialLinearGroup.mapGL ℝ) (CongruenceSubgroup.Gamma 1)) (k - 12))
:
Equations
- Modform_mul_Delta' k f = IsCuspForm_to_CuspForm (CongruenceSubgroup.Gamma 1) k (mul_Delta_map k f) ⋯
Instances For
theorem
mul_apply
{k₁ k₂ : ℤ}
{Γ : Subgroup (Matrix.SpecialLinearGroup (Fin 2) ℤ)}
(f : SlashInvariantForm (Subgroup.map (Matrix.SpecialLinearGroup.mapGL ℝ) Γ) k₁)
(g : SlashInvariantForm (Subgroup.map (Matrix.SpecialLinearGroup.mapGL ℝ) Γ) k₂)
(z : UpperHalfPlane)
:
theorem
Modform_mul_Delta_apply
(k : ℤ)
(f : ModularForm (Subgroup.map (Matrix.SpecialLinearGroup.mapGL ℝ) (CongruenceSubgroup.Gamma 1)) (k - 12))
(z : UpperHalfPlane)
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
IsCuspForm_weight_lt_eq_zero
(k : ℤ)
(hk : k < 12)
(f : ModularForm (Subgroup.map (Matrix.SpecialLinearGroup.mapGL ℝ) (CongruenceSubgroup.Gamma 1)) k)
(hf : IsCuspForm (CongruenceSubgroup.Gamma 1) k f)
:
theorem
Delta_E4_E6_eq :
ModForm_mk (CongruenceSubgroup.Gamma 1) 12 Delta_E4_E6_aux = (1 / 1728) • ((DirectSum.of (ModularForm (Subgroup.map (Matrix.SpecialLinearGroup.mapGL ℝ) (CongruenceSubgroup.Gamma 1))) 4) E₄ ^ 3 - (DirectSum.of (ModularForm (Subgroup.map (Matrix.SpecialLinearGroup.mapGL ℝ) (CongruenceSubgroup.Gamma 1))) 6)
E₆ ^ 2)
12
theorem
weight_two_zero
(f : ModularForm (Subgroup.map (Matrix.SpecialLinearGroup.mapGL ℝ) (CongruenceSubgroup.Gamma 1)) 2)
:
theorem
dim_modforms_lvl_one
(k : ℕ)
(hk : 3 ≤ ↑k)
(hk2 : Even k)
:
Module.rank ℂ (ModularForm (Subgroup.map (Matrix.SpecialLinearGroup.mapGL ℝ) (CongruenceSubgroup.Gamma 1)) ↑k) = ↑(if 12 ∣ ↑k - 2 then ⌊↑k / 12⌋₊ else ⌊↑k / 12⌋₊ + 1)
theorem
ModularForm.dimension_level_one
(k : ℕ)
(hk : 3 ≤ ↑k)
(hk2 : Even k)
:
Module.rank ℂ (ModularForm (Subgroup.map (Matrix.SpecialLinearGroup.mapGL ℝ) (CongruenceSubgroup.Gamma 1)) ↑k) = ↑(if 12 ∣ ↑k - 2 then ⌊↑k / 12⌋₊ else ⌊↑k / 12⌋₊ + 1)
theorem
dim_gen_cong_levels
(k : ℤ)
(Γ : Subgroup (Matrix.SpecialLinearGroup (Fin 2) ℤ))
(hΓ : Γ.index ≠ 0)
: