Documentation

SpherePacking.ModularForms.PhiTransform

Transformation Rules for φ₀ #

This file proves the transformation properties of φ₀ under the modular group action, as stated in Blueprint Lemma 7.2:

  1. T-periodicity: φ₀(z + 1) = φ₀(z)
  2. S-transformation: φ₀(-1/z) = φ₀(z) - (12i/π)(1/z)φ₋₂(z) - (36/π²)(1/z²)φ₋₄(z)

Note: The blueprint uses φ₋₂, φ₋₄ but Lean uses φ₂', φ₄' since negative subscripts are not valid identifiers.

Main Results #

Supporting lemmas (in other files) #

Main Theorem: T-periodicity of φ₀ #

φ₀ is 1-periodic: φ₀(z + 1) = φ₀(z)

Main Theorem: S-transformation of φ₀ #

theorem φ₀_S_transform (z : UpperHalfPlane) :
φ₀ (ModularGroup.S z) = φ₀ z - 12 * Complex.I / (Real.pi * z) * φ₂' z - 36 / (Real.pi ^ 2 * z ^ 2) * φ₄' z

The S-transformation formula for φ₀: φ₀(-1/z) = φ₀(z) - (12i/π)(1/z)φ₋₂(z) - (36/π²)(1/z²)φ₋₄(z)

This is Blueprint Lemma 7.2.