Theta Derivative Identities #
This file defines error terms for the Serre derivative identities of Jacobi theta functions H₂, H₃, H₄ (Blueprint Proposition 6.52), establishes their S/T transformation rules, and constructs level-1 invariants.
Contents #
Error Terms (Phases 1-5) #
- Error terms
f₂,f₃,f₄definitions - MDifferentiable proofs for error terms
- Relation
f₂ + f₄ = f₃(fromjacobi_identityin JacobiTheta.lean) - S/T transformation rules:
f₂_S_action,f₂_T_action,f₄_S_action,f₄_T_action
Level-1 Invariants (Phase 6) #
- Level-1 invariant
theta_g(weight 6): g = (2H₂ + H₄)f₂ + (H₂ + 2H₄)f₄ - Level-1 invariant
theta_h(weight 8): h = f₂² + f₂f₄ + f₄² - S/T invariance:
theta_g_S_action,theta_g_T_action,theta_h_S_action,theta_h_T_action
Strategy #
We define error terms f₂, f₃, f₄ = (LHS - RHS) and prove their transformation rules under the S and T generators of SL(2,ℤ). The key results are:
- f₂|S = -f₄, f₂|T = -f₂
- f₄|S = -f₂, f₄|T = f₃
Using these transformation rules, we construct g and h such that g|S = g, g|T = g, h|S = h, h|T = h. This makes g and h into level-1 (SL(2,ℤ)-invariant) modular forms.
Phase 1: Error Term Definitions #
Phase 2: MDifferentiable for Error Terms #
f₂ is MDifferentiable
f₃ is MDifferentiable
f₄ is MDifferentiable
Phase 3-4: Relation f₂ + f₄ = f₃ #
Phase 5: S/T Transformation Rules for f₂, f₄ #
These transformations depend on serre_D_slash_equivariant (which has a sorry in Derivative.lean).
The proofs use:
- serre_D_slash_equivariant: (serre_D k F)|[k+2]γ = serre_D k (F|[k]γ)
- H₂_S_action: H₂|[2]S = -H₄
- H₄_S_action: H₄|[2]S = -H₂
- H₂_T_action: H₂|[2]T = -H₂
- H₃_T_action: H₃|[2]T = H₄
- H₄_T_action: H₄|[2]T = H₃
From these, we get:
- (serre_D 2 H₂)|[4]S = serre_D 2 (H₂|[2]S) = serre_D 2 (-H₄) = -serre_D 2 H₄
- Products transform multiplicatively: (H₂·G)|[4]S = (H₂|[2]S)·(G|[2]S)
f₂ transforms under S as f₂|S = -f₄.
Proof outline using serre_D_slash_equivariant:
- (serre_D 2 H₂)|[4]S = serre_D 2 (H₂|[2]S) = serre_D 2 (-H₄) = -serre_D 2 H₄
- (H₂(H₂ + 2H₄))|[4]S = (-H₄)((-H₄) + 2(-H₂)) = H₄(H₄ + 2H₂)
- f₂|[4]S = -serre_D 2 H₄ - (1/6)H₄(H₄ + 2H₂) = -f₄
Key lemmas used:
- serre_D_slash_equivariant: (serre_D k F)|[k+2]γ = serre_D k (F|[k]γ)
- serre_D_smul: serre_D k (c • F) = c • serre_D k F (used for negation)
- mul_slash_SL2: (f * g)|[k1+k2]A = (f|[k1]A) * (g|[k2]A)
- add_slash, SL_smul_slash for linearity
f₂ transforms under T as f₂|T = -f₂.
Proof outline:
- (serre_D 2 H₂)|[4]T = serre_D 2 (H₂|[2]T) = serre_D 2 (-H₂) = -serre_D 2 H₂
- (H₂(H₂ + 2H₄))|[4]T = (-H₂)((-H₂) + 2H₃) Using Jacobi H₃ = H₂ + H₄: -H₂ + 2H₃ = -H₂ + 2(H₂ + H₄) = H₂ + 2H₄ So: (H₂(H₂ + 2H₄))|[4]T = (-H₂)(H₂ + 2H₄)
- f₂|[4]T = -serre_D 2 H₂ - (1/6)(-H₂)(H₂ + 2H₄) = -serre_D 2 H₂ + (1/6)H₂(H₂ + 2H₄) = -(serre_D 2 H₂ - (1/6)H₂(H₂ + 2H₄)) = -f₂
f₄ transforms under S as f₄|S = -f₂.
Proof outline (symmetric to f₂_S_action):
- (serre_D 2 H₄)|[4]S = serre_D 2 (H₄|[2]S) = serre_D 2 (-H₂) = -serre_D 2 H₂
- (H₄(2H₂ + H₄))|[4]S = (-H₂)(2(-H₄) + (-H₂)) = H₂(H₂ + 2H₄)
- f₄|[4]S = -serre_D 2 H₂ + (1/6)H₂(H₂ + 2H₄) = -f₂
f₄ transforms under T as f₄|T = f₃.
Proof outline:
- (serre_D 2 H₄)|[4]T = serre_D 2 (H₄|[2]T) = serre_D 2 H₃
- (H₄(2H₂ + H₄))|[4]T = H₃(2(-H₂) + H₃) = H₃(H₃ - 2H₂) Using Jacobi H₃ = H₂ + H₄: H₃ - 2H₂ = H₄ - H₂
- f₄|[4]T = serre_D 2 H₃ + (1/6)H₃(H₃ - 2H₂) But H₂² - H₄² = (H₂ - H₄)(H₂ + H₄) = (H₂ - H₄)H₃ So (1/6)(H₂² - H₄²) = -(1/6)H₃(H₄ - H₂) = -(1/6)H₃(H₃ - 2H₂) Thus f₃ = serre_D 2 H₃ - (1/6)(H₂² - H₄²) = f₄|[4]T
Phase 6: Level-1 Invariants g, h #
g is invariant under S.
Proof: g = (2H₂ + H₄)f₂ + (H₂ + 2H₄)f₄ Under S: H₂ ↦ -H₄, H₄ ↦ -H₂, f₂ ↦ -f₄, f₄ ↦ -f₂ g|S = (2(-H₄) + (-H₂))(-f₄) + ((-H₄) + 2(-H₂))(-f₂) = (2H₄ + H₂)f₄ + (H₄ + 2H₂)f₂ = g
g is invariant under T.
Proof: Under T: H₂ ↦ -H₂, H₄ ↦ H₃, f₂ ↦ -f₂, f₄ ↦ f₃ = f₂ + f₄ g|T = (2(-H₂) + H₃)(-f₂) + ((-H₂) + 2H₃)(f₂ + f₄) Using Jacobi: H₃ = H₂ + H₄, simplifies to g.
h is invariant under S.
Proof: h = f₂² + f₂f₄ + f₄² Under S: f₂|[4]S = -f₄, f₄|[4]S = -f₂ Using mul_slash_SL2: (f₂²)|[8]S = (f₂|[4]S)² = (-f₄)² = f₄² (f₂f₄)|[8]S = (f₂|[4]S)(f₄|[4]S) = (-f₄)(-f₂) = f₂f₄ (f₄²)|[8]S = (f₄|[4]S)² = (-f₂)² = f₂² So h|[8]S = f₄² + f₂f₄ + f₂² = f₂² + f₂f₄ + f₄² = h
h is invariant under T.
Proof: Under T: f₂ ↦ -f₂, f₄ ↦ f₃ = f₂ + f₄ h|T = (-f₂)² + (-f₂)(f₂ + f₄) + (f₂ + f₄)² = f₂² - f₂² - f₂f₄ + f₂² + 2f₂f₄ + f₄² = f₂² + f₂f₄ + f₄² = h